Abstract

In the paper, the specification of a new neutronics benchmark for large sodium cooled fast reactor (SFR) core and results of modeling by different participants are presented. The neutronics benchmark describes the core of the French sodium cooled reactor Superphénix at its startup configuration, which in particular was used for experimental measurement of reactivity characteristics. The benchmark consists of the detailed heterogeneous core specification for neutronic analysis and the results of the reference solution. Different core geometries and thermal conditions from the cold “as fabricated” up to full power were considered. The reference Monte Carlo (MC) solution of serpent 2 includes data on multiplication factor, power distribution, axial and radial reaction rates distribution, reactivity coefficients and safety characteristics, control rods worth, kinetic data. The results of modeling with seven other solutions using deterministic and MC methods are also presented and compared to the reference solution. The comparisons results demonstrate appropriate agreement of evaluated characteristics. The neutronics results will be used in the second phase of the benchmark for the evaluation of transient behavior of the core.

References

1.
Mikityuk
,
K.
,
Girardi
,
E.
,
Krepel
,
J.
,
Bubelis
,
E.
,
Fridman
,
E.
,
Rineiski
,
A.
, and
Girault
,
N.
,
2017
, “
ESFR-SMART: New Horizon-2020 Project on SFR Safety
,”
International Conference on Fast Reactors and Related Fuel Cycle: Next Generation Nuclear Systems for Sustainable Development (FR17)
, Yekaterinburg, Russia, June 26–29, IAEA, Vol. CN245, p. 450.https://www.researchgate.net/publication/315381003_ESFR-SMART_new_Horizon-2020_project_on_SFR_safety
2.
Ponomarev
,
A.
,
Bednarova
,
A.
, and
Mikityuk
,
K.
,
2018
, “
New Sodium Fast Reactor Neutronics Benchmark
,”
Proceedings of PHYSOR
,
Cancun, Mexico
, Apr. 22–26, pp.
3790
3805
.https://zenodo.org/record/1309384#.YOV3YOgzbIU
3.
Leppanen
,
J.
,
Pusa
,
M.
,
Viitanen
,
T.
,
Valtavirta
,
V.
, and
Kaltiaisenaho
,
T.
,
2015
, “
The Serpent Monte Carlo Code: Status, Development and Applications in 2013
,”
Ann. Nucl. Energy
,
82
, pp.
142
150
.10.1016/j.anucene.2014.08.024
4.
Santamarina
,
A.
,
Bernard
,
D.
,
Blaise
,
P.
,
Coste
,
M.
,
Courcelle
,
A.
,
Huynh
,
T. D.
,
Jouanne
,
C.
,
Leconte
,
P.
,
Litaize
,
O.
,
Mengelle
,
S.
,
Noguère
,
G.
,
Ruggiéri
,
J.-M.
,
Sérot
,
O.
,
Tommasi
,
J.
,
Vaglio
,
C.
,
Vidal
,
J.-F.
, and
Rugama
,
Y.
,
2009
, “
The JEFF-3.1.1 Nuclear Data Library—JEFF Report 22—Validation Results From JEF-2.2 to JEFF-3.1.1
,” Nuclear Energy Agency, Paris, France, Report No. NEA No. 6807, accessed Jan. 1, 2019, https://www.oecd-nea.org/dbdata/nds_jefreports/jefreport-22/nea6807-jeff22.pdf
5.
Travleev
,
A.
,
2013
, “
TSP: Python Package to Facilitate Preparation of Input Files
,”
KIT
,
Karlsruhe, Germany
, Report No. INR 31/13—NUKLEAR 3462.
6.
Rearden
,
B. T.
, and
Jessee
,
M. A.
,
2016
, “
SCALE Code System
,”
Oak Ridge National Laboratory (ORNL)
,
Oak Ridge, TN
, p.
2747
, Report No. ORNL/TM-2005/39, No. 6.2.3.
7.
Chadwick
,
M. B.
,
Herman
,
M.
,
Obložinský
,
P.
,
Dunn
,
M. E.
,
Danon
,
Y.
,
Kahler
,
A. C.
,
Smith
,
D. L.
,
Pritychenko
,
B.
,
Arbanas
,
G.
,
Arcilla
,
R.
,
Brewer
,
R.
,
Brown
,
D. A.
,
Capote
,
R.
,
Carlson
,
A. D.
,
Cho
,
Y. S.
,
Derrien
,
H.
,
Guber
,
K.
,
Hale
,
G. M.
,
Hoblit
,
S.
,
Holloway
,
S.
,
Johnson
,
T. D.
,
Kawano
,
T.
,
Kiedrowski
,
B. C.
,
Kim
,
H.
,
Kunieda
,
S.
,
Larson
,
N. M.
,
Leal
,
L.
,
Lestone
,
J. P.
,
Little
,
R. C.
,
McCutchan
,
E. A.
,
MacFarlane
,
R. E.
,
MacInnes
,
M.
,
Mattoon
,
C. M.
,
McKnight
,
R. D.
,
Mughabghab
,
S. F.
,
Nobre
,
G. P. A.
,
Palmiotti
,
G.
,
Palumbo
,
A.
,
Pigni
,
M. T.
,
Pronyaev
,
V. G.
,
Sayer
,
R. O.
,
Sonzogni
,
A. A.
,
Summers
,
N. C.
,
Talou
,
P.
,
Thompson
,
I. J.
,
Trkov
,
A.
,
Vogt
,
R. L.
,
van der Marck
,
S. C.
,
Wallner
,
A.
,
White
,
M. C.
,
Wiarda
,
D.
, and
Young
,
P. G.
,
2011
, “
ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data
,”
Nucl. Data Sheets
,
112
(
12
), pp.
2887
2996
.10.1016/j.nds.2011.11.002
8.
Rearden
,
B. T.
,
Petrie
,
L. M.
,
Peplow
,
D. E.
,
Bekar
,
K. B.
,
Wiarda
,
D.
,
Celik
,
C.
,
Perfetti
,
C. M.
,
Ibrahim
,
A. M.
,
Hart
,
S. W. D.
,
Dunn
,
M. E.
, and
Marshall
,
W. J.
,
2015
, “
Monte Carlo Capabilities of the SCALE Code System
,”
Ann. Nucl. Energy
,
82
, pp.
130
141
.10.1016/j.anucene.2014.08.019
9.
Pelowitz
,
D. B.
,
2014
, “
MCNP6 User's Manual, Code Version 6.1.1beta
,”
Los Alamos National Laboratory
, Los Alamos, NM, Report No. LA-CP-14-00745.
10.
Lindley
,
B.
,
Hosking
,
G.
,
Smith
,
P.
,
Powney
,
D.
,
Tollit
,
B.
,
Fry
,
T.
,
Perry
,
R.
,
Ware
,
T.
,
Murphy
,
C.
,
Grove
,
C.
,
Thomas
,
M.
,
Hesketh
,
K.
, and
Kotlyar
,
D.
,
2017
, “
Developments With the WIMS Reactor Physics Code for Whole Core Calculations
,”
Proceedings of M&C2017
,
Jeju, South Korea
, Apr. 16–20, Paper No. P008.
11.
Davies
,
U.
,
Lindley
,
B.
,
Tollit
,
B.
, and
Shwageraus
,
E.
,
2019
, “
Whole-Core Validation of the Superphénix Reactor Using WIMS11 and an Investigation Into a Hybrid RZ-HEX SP3 Calculation Route
,”
Proceedings of M&C2019
,
Portland, OR
, Aug. 25–29, pp.
1198
1207
.
12.
Rohde
,
U.
,
Kliem
,
S.
,
Grundmann
,
U.
,
Baier
,
S.
,
Bilodid
,
Y.
,
Duerigen
,
S.
,
Fridman
,
E.
,
Gommlich
,
A.
,
Grahn
,
A.
,
Holt
,
L.
,
Kozmenkov
,
Y.
, and
Mittag
,
S.
,
2016
, “
The Reactor Dynamics Code DYN3D—Models, Validation and Applications
,”
Prog. Nucl. Energy
,
89
, pp.
170
190
.10.1016/j.pnucene.2016.02.013
13.
Nikitin
,
E.
, and
Fridman
,
E.
,
2018
, “
Extension of the Reactor Dynamics Code DYN3D to SFR Applications—Part II: Validation Against the Phenix EOL Control Rod Withdrawal Tests
,”
Ann. Nucl. Energy
,
119
, pp.
411
418
.10.1016/j.anucene.2018.05.016
14.
Nikitin
,
E.
, and
Fridman
,
E.
,
2019
, “
Modeling of the FFTF Isothermal Physics Tests With the Serpent and DYN3D Codes
,”
Ann. Nucl. Energy
,
132
, pp.
679
685
.10.1016/j.anucene.2019.06.058
15.
Fridman
,
E.
, and
Shwageraus
,
E.
,
2013
, “
Modeling of SFR Cores With Serpent-DYN3D Codes Sequence
,”
Ann. Nucl. Energy
,
53
, pp.
354
363
.10.1016/j.anucene.2012.08.006
16.
Hebert
,
A.
,
1993
, “
Consistent Technique for the Pin-by-Pin Homogenization of a Pressurized Water Reactor Assembly
,”
Nucl. Sci. Eng.
,
113
(
3
), pp.
227
238
..10.13182/NSE92-10
17.
Kavenoky
,
A.
,
1978
, “
The SPH Homogenization Method
,”
A Specialists' Meeting on Homogenization Methods in Reactor Physics, IAEA, Vienna, Austria, Report No. IAEA-TECDOC-231.
18.
Nikitin
,
E.
,
Fridman
,
E.
, and
Mikityuk
,
K.
,
2015
, “
On the Use of the SPH Method in Nodal Diffusion Analyses of SFR Cores
,”
Ann. Nucl. Energy
,
85
, pp.
544
551
.10.1016/j.anucene.2015.06.007
19.
Downar
,
T. J.
,
Barber
,
D. A.
,
Miller
,
R. M. R.
,
Lee
,
C.
,
Kozlowski
,
T.
,
Lee
,
D.
,
Xu
,
Y.
,
Gan
,
J.
,
Joo
,
H. G.
,
Cho
,
J. Y.
,
Lee
,
K.
, and
Ulses
,
A. P.
,
2002
, “
PARCS: Purdue Advanced Reactor Core Simulator
,”
Proceedings of PHYSOR-2002
,
Seoul, South Korea
, Oct. 7–10.https://experts.illinois.edu/en/publications/parcs-purdue-advanced-reactor-core-simulator
20.
Henry
,
R.
, and
Seubert
,
A.
,
2019
, “
3-D Modelling of a Superphénix Benchmark With Serpent and PARCS for Coupled Simulation With PARCS/ATHLET
,”
Proceedings of the M&C2019
,
Portland, OR
, Aug. 25–29, pp.
2664
2673
.https://www.researchgate.net/publication/335740944_3-D_MODELLING_OF_A_SUPERPHENIX_BENCHMARK_WITH_SERPENT_AND_PARCS_FOR_COUPLED_SIMULATION_WITH_PARCSATHLET
21.
Marleau
,
G.
,
Hébert
,
A.
, and
Roy
,
R.
,
1992
, “
New Computational Methods Used in the Lattice Code Dragon
,”
Proceedings of Int. Topl. Mtg. on Advances in Reactor Physics
,
American Nuclear Society
,
Charleston, SC
, Mar. 8–11, pp.
1
177
.https://inis.iaea.org/search/search.aspx?orig_q=RN:23067872
22.
Hébert
,
A.
,
2013
, “
DRAGON5: Designing Computational Schemes Dedicated to Fission Nuclear Reactors for Space
,”
International Conference on Nuclear and Emerging Technologies for Space
,
Albuquerque, NM
, Feb. 25–28, Paper No. 6722.
23.
Faure
,
B.
, and
Marleau
,
G.
,
2017
, “
Simulation of a Sodium Fast Core: Effect of B1 Leakage Models on Group Constant Generation
,”
Ann. Nucl. Energy
,
99
, pp.
484
494
.10.1016/j.anucene.2016.10.002
24.
Jiménez-Carrascosa
,
A.
,
Fridman
,
E.
,
García-Herranz
,
N.
,
Alvarez-Velarde
,
F.
,
Romojaro
,
P.
, and
Bostelmann
,
F.
,
2019
, “
About the Impact of the Unresolved Resonance Region in Monte Carlo Simulations of Sodium Fast Reactors
,”
Proceedings of ICAPP-2019
,
Juan-les-Pins, France
, May 12–15.https://www.osti.gov/servlets/purl/1523719
25.
Garcia-Cervantes
,
E.-Y.
,
2019
, “
Modeling and Analysis of Power Fast Reactors Tests for the Neutronic Calculation Scheme APOLLO-3®-SFR Applied to the ASTRID Reactor
,” Ph.D. dissertation, Universite d'Aix-Marseille, Marseille,
France
, CEA, DEN-DER (France), Report No. FRCEA-TH-12142.
You do not currently have access to this content.