Abstract

In this work, a detailed assessment of the decay heat power for the commercial-size European sodium-cooled fast reactor (ESFR) at the end of its equilibrium cycle has been performed. The summation method has been used to compute very accurate spatial- and time-dependent decay heat by employing state-of-the-art coupled transport-depletion computational codes and nuclear data. This detailed map provides basic information for subsequent transient calculations of the ESFR. A comprehensive analysis of the decay heat has been carried out and interdependencies between decay heat and different parameters characterizing the core state prior to shutdowns, such as discharge burnup or type of fuel material, have been identified. That analysis has served as a basis to develop analytic functions to reconstruct the spatial-dependent decay heat power for the ESFR for cooling times within the first day after shutdown.

References

1.
Mikityuk
,
K.
,
Girardi
,
E.
,
Krepel
,
J.
,
Bubelis
,
E.
,
Fridman
,
E.
,
Rineiski
,
A.
, and
Girault
,
N.
,
2017
, “
ESFR-SMART: New Horizon-2020 Project on SFR Safety
,”
Int. Conf. on Fast Reactors and Related Fuel Cycle: Next Generation Nuclear Systems for Sustainable Development (FR17)
, Yekaterinburg, Russian Federation, June 26–29, Paper No. #CN245-450.https://www.researchgate.net/publication/315381003_ESFR-SMART_new_Horizon-2020_project_on_SFR_safety
2.
Fiorini
,
G. L.
, and
Vasile
,
A.
,
2011
, “
European Commission – 7th Framework Programme: The Collaborative Project on European Sodium Fast Reactor (CP ESFR
),”
Nucl. Eng. Des.
,
241
(
9
), pp.
3461
3469
.10.1016/j.nucengdes.2011.01.052
3.
Rineiski
,
A.
,
Meriot
,
C.
,
Marchetti
,
M.
,
Krepel
,
J.
,
Tsige-Tamirat
,
H.
,
Álvarez-Velarde
,
F.
,
Girardi
,
E.
, and
Mikityuk
,
K.
,
2022
, “
New Core Safety Measures and Their Preliminary Assessment in the ESFR-SMART Project
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
8
(
1
).
4.
Fridman
,
E.
,
Álvarez-Velarde
,
F.
,
Romojaro
,
P.
,
Tsige-Tamirat
,
H.
,
Jiménez-Carrascosa
,
A.
,
García-Herranz
,
N.
,
Bernard
,
F.
,
Gregg
,
R.
,
Davies
,
U.
,
Krepel
,
J.
,
Massara
,
S.
,
Poumerouly
,
S.
,
Girardi
,
E.
, and
Mikityuk
,
K.
,
2022
, “
Neutronic Analysis of the European Sodium Fast Reactor: Part I - Fresh Core Results
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
8
(
1
).
5.
Fridman
,
E.
,
Álvarez-Velarde
,
F.
,
Romojaro
,
P.
,
Tsige-Tamirat
,
H.
,
Jiménez-Carrascosa
,
A.
,
García-Herranz
,
N.
,
Bernard
,
F.
,
Gregg
,
R.
,
Davies
,
U.
,
Krepel
,
J.
,
Lindley
,
B.
,
Massara
,
S.
,
Poumerouly
,
S.
,
Girardi
,
E.
, and
Mikityuk
,
K.
,
2022
, “
Neutronic Analysis of the European Sodium Fast Reactor: Part II - Burnup Results
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
8
(
1
).
6.
Davies
,
U.
,
Margulis
,
M.
,
Shwageraus
,
E.
,
Fridman
,
E.
,
Jiménez-Carrascosa
,
A.
,
García-Herranz
,
N.
,
Cabellos
,
O.
,
Gregg
,
R.
, and
Krepel
,
J.
,
2022
, “
Evaluation of the ESFR End of Cycle State: Spatial Distributions of Reactivity Coefficients
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
8
(
1
).
7.
Ehster
,
S.
,
Ammirabile
,
L.
,
Bubelis
,
E.
,
Carluec
,
B.
,
Droin
,
J. B.
, and
Girardi
,
E.
,
2021
, “
Safety Method for the Pre-Conceptual Phase of Sodium-Cooled Fast Reactors
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
8
(
1
) (accepted).10.1115/1.4050766
8.
Tobias
,
A.
,
1980
, “
Decay Heat
,”
Prog. Nucl. Energy
,
5
(
1
), pp.
1
93
.10.1016/0149-1970(80)90002-5
9.
Bilodid
,
Y.
,
Fridman
,
E.
,
Kotlyar
,
D.
, and
Shwageraus
,
E.
,
2018
, “
Explicit Decay Heat Calculation in the Nodal Diffusion Code DYN3D
,”
Ann. Nucl. Energy
,
121
, pp.
374
381
.10.1016/j.anucene.2018.07.045
10.
American National Standards Institute/American Nuclear Society
,
2014
,
ANSI/ANS-5.1 Decay Heat Power in Light Water Reactors
,
American National Standard
,
La Grange Park, IL
.
11.
Tasaka
,
K.
,
Katoh
,
T.
,
Katakura
,
J.
,
Yoshida
,
T.
,
Iijima
,
S.
,
Nakasima
,
R.
, and
Nagayama
,
S.
,
1991
, “
Recommendation on Decay Heat Power in Nuclear Reactors
,”
J. Nucl. Sci. Technol.
,
28
(
12
), pp.
1134
1142
.10.1080/18811248.1991.9731481
12.
Shwageraus
,
E.
, and
Hejzlar
,
P.
,
2009
, “
Decay Heat in Fast Reactors With Transuranic Fuels
,”
Nucl. Eng. Des.
,
239
(
12
), pp.
2646
2653
.10.1016/j.nucengdes.2009.07.010
13.
Bodi
,
J.
,
Ponomarev
,
A.
,
Bubelis
,
E.
, and
Mikityuk
,
K.
,
2022
, “
Analysis of ESFR Decay Heat Removal Systems in Protected Station Blackout
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
8
(
1
).
14.
Rineiski
,
A.
,
Meriot
,
C.
,
Marchetti
,
M.
, and
Krepel
,
J.
,
2018
, “
Core Safety Measures in ESFR-SMART
,”
Proc. Int. Conf. PHYSOR 2018
,
Cancún, México
, Apr. 22–26, p.
9
.
15.
Rearden
,
B. T.
, and
Jessee
,
M. A.
,
2016
, “
SCALE Code System
,” Ornl/Tm-2005/39, (6.2.3),
2747
pages.
16.
Leppänen
,
J.
,
Pusa
,
M.
,
Viitanen
,
T.
,
Valtavirta
,
V.
, and
Kaltiaisenaho
,
T.
,
2015
, “
The Serpent Monte Carlo Code: Status, Development and Applications in 2013
,”
Ann. Nucl. Energy
,
82
, pp.
142
150
.10.1016/j.anucene.2014.08.024
17.
Lindley
,
B. A.
,
Hosking
,
J. G.
,
Smith
,
P. J.
,
Powney
,
D. J.
,
Tollit
,
B. S.
,
Newton
,
T. D.
,
Perry
,
R.
,
Ware
,
T. C.
, and
Smith
,
P. N.
,
2017
, “
Current Status of the Reactor Physics Code WIMS and Recent Developments
,”
Ann. Nucl. Energy
,
102
, pp.
148
157
.10.1016/j.anucene.2016.09.013
18.
OECD/NEA Data Bank
,
2016
, “JEFF-3.1 Evaluated Data Library - Neutron Data,” accessed July 27, 2021, https://www.oecd-nea.org/dbforms/data/eva/evatapes/jeff_31/
19.
Pusa
,
M.
, and
Leppanen
,
J.
,
2010
, “
Computing the Matrix Exponential in Burnup Calculations
,”
J. Nucl. Sci. Technol.
,
164
(
2
), pp.
140
150
.10.13182/NSE09-14
20.
Gauld
,
I. C.
,
Radulescu
,
G.
,
Ilas
,
G.
,
Murphy
,
B. D.
,
Williams
,
M. L.
, and
Wiarda
,
D.
,
2011
, “
Isotopic Depletion and Decay Methods and Analysis Capabilities in SCALE
,”
Nucl. Technol.
,
174
(
2
), pp.
169
195
.10.13182/NT11-3
21.
Ilas
,
G.
,
Gauld
,
I. C.
, and
Liljenfeldt
,
H.
,
2014
, “
Validation of ORIGEN for LWR Used Fuel Decay Heat Analysis With SCALE
,”
Nucl. Eng. Des.
,
273
, pp.
58
67
.10.1016/j.nucengdes.2014.02.026
22.
Mirza
,
S. M.
,
Khan
,
A.
, and
Mirza
,
N. M.
,
2010
, “
Post-Shutdown Decay Power and Radionuclide Inventories in the Discharged Fuels of HEU and Potential LEU Miniature Neutron Source Reactors
,”
Ann. Nucl. Energy
,
37
(
5
), pp.
701
706
.10.1016/j.anucene.2010.02.001
23.
Omar
,
H.
, and
Ghazi
,
N.
,
2013
, “
Decay Heat Analysis of MNSR Reactor Core Using ORIGEN-2 Code
,”
Nucl. Eng. Des.
,
265
, pp.
978
985
.10.1016/j.nucengdes.2013.06.035
24.
Lebrat
,
J. F.
,
Vallet
,
V.
,
Coquelet-Pascal
,
C.
,
Venard
,
C.
, and
Eschbach
,
R.
,
2018
, “
Uncertainty Assessment on the Calculated Decay Heat of the ASTRID Basic Design Core Based on the DARWIN-2.3 Package
,”
Ann. Nucl. Energy
,
120
, pp.
378
391
.10.1016/j.anucene.2018.05.043
25.
Glasstone
,
S.
, and
Sesonske
,
A.
,
1981
,
Nuclear Reactor Engineering
, 3rd ed.,
Van Nostrand Reinhold Company
,
New York
, p.
820
.
26.
Curve Fitting Toolbox: User's Guide (r2020a)
,
2020
, The Mathworks Inc., Natick, MA.
You do not currently have access to this content.