Abstract

As part of the European sodium fast reactor (ESFR)-safety measures assessment and research tools (SMART) project, safety assessments are being conducted on the updated ESFR design. An important part of the study is the evaluation of the reactor's behavior within hypothetical accidental conditions to assess and ensure that the accident would not lead to unexpected and disastrous events. In this paper, the analyzed accidental scenario is the so-called protected station blackout (PSBO), where the offsite power is lost for the power plant, simulated by using the TRACE and simulator-sodium fast reactor (SIM-SFR) system codes. The assessment started from the simulation of the reactor behavior without the decay heat removal systems (DHRSs). Following this, calculations of multiple DHRS arrangements have been performed to evaluate the individual and combined efficiency of the systems. Where it was possible, the results from the two system codes have been compared to show the consistency of the separate calculations. Through this study, the design of the DHRSs proposed at the beginning of the project has been investigated, and certain recommendations have been made for further improvement of the DHRS systems performance.

References

1.
Mikityuk
,
K.
,
Girard
,
E.
,
Krepel
,
J.
,
Bubelis
,
E.
,
Fridman
,
E.
,
Rineiski
,
A.
,
Girault
,
N.
,
Payot
,
F.
,
Buligins
,
L.
,
Gerbeth
,
G.
,
Chauvin
,
N.
,
Latge
,
C.
, and
Garnier
,
J.-C.
,
2018
, “
ESFR-SMART: New Horizon-2020 Project on SFR Safety
,”
International Conference on Fast Reactors and Related Fuel Cycles: Next Generation Nuclear Systems for Sustainable
, Development (FR17), Zenodo, Yekaterinburg, Russia, June
26
29
.https://www.researchgate.net/publication/315381003_ESFR-SMART_new_Horizon-2020_project_on_SFR_safety
2.
Guidez
,
J.
,
Bodi
,
J.
,
Mikityuk
,
K.
,
Girardi
,
E.
, and
Carluec
,
B.
,
2021
, “
New Reactor Safety Measures for the European Sodium Fast Reactor—Part I: Conceptual Design
,”
ASME J. Nucl. Rad Sci.
,
8
(
1
), p. 011311.10.1115/1.4051364
3.
International Atomic Energy Agency (IAEA)
,
2013
, “
Benchmark Analyses on the Natural Circulation Test Performed During the PHENIX End-of-life Experiments
,” IAEA, Vienna, IAEA-TECDOC-1703, accessed Jan. 9, 2021, https://www.iaea.org/publications/10377/benchmark-analyses-on-the-natural-circulation-test-performed-during-the-phenix-end-of-life-experiments
4.
GuidezPrele
,
J. G.
,
2017
,
Superphénix. Technical and Scientific Achievements
,
Atlantis Press
, Paris, France.
5.
U. S. R. Commission
,
2011
, “
TRACE—Theory Manual—Field Equations, Solution Methods, and Physical Models
,” U. S. R. Commission, Washington, DC, Report No. 20555-0001: Version 5.0, accessed Jan. 9, 2021, https://www.nrc.gov/docs/ML1200/ML120060403.html
6.
Bubelis
,
E.
,
Tosello
,
A.
,
Pfrang
,
W.
,
Schikorr
,
M.
,
Mikityuk
,
K.
,
Panadero
,
A.-L.
,
Martorell
,
S.
,
Ordóñez
,
J.
,
Seubert
,
A.
,
Lerchl
,
G.
,
Stempniewicz
,
M.
,
Alcaro
,
F.
,
De Geus
,
E.
,
Delmaere
,
T.
,
Poumerouly
,
S.
, and
Wallenius
,
J.
,
2017
, “
System Codes Benchmarking on a Low Sodium Void Effect SFR Heterogeneous Core Under ULOF Conditions
,”
Nucl. Eng. Des.
,
320
, pp.
325
345
.10.1016/j.nucengdes.2017.06.015
7.
Mikityuk
,
K.
,
Pelloni
,
S.
,
Coddington
,
P.
,
Bubelis
,
E.
, and
Chawla
,
R.
,
2005
, “
FAST: An Advanced Code System for Fast Reactor Transient Analysis
,”
Ann. Nucl. Energy
,
32
(
15
), pp.
1613
1631
.10.1016/j.anucene.2005.06.002
8.
Mikityuk
,
K.
, and
Shestopalov
,
A.
,
2011
, “
FRED Fuel Behaviour Code: Main Models and Analysis of Halden IFA-503.2 Tests
,”
Nucl. Eng. Des.
,
241
(
7
), pp.
2455
2461
.10.1016/j.nucengdes.2011.04.033
9.
Chenu
,
A.
,
2011
, “
Single- and Two-Phase Flow Modeling for Coupled Neutronics/Thermal-Hydraulics Transient Analysis of Advanced Sodium-Cooled Fast Reactors
,” Ph.D. thesis,
École Polytechnique Fédérale de Lausanne
, Lausanne, Switzerland.
10.
Chenu
,
A.
,
Mikityuk
,
K.
, and
Chawla
,
R.
,
2012
, “
Analysis of Selected Phenix EOL Tests With the FAST Code system—Part II: Unprotected Phase of the Natural Convection Test
,”
Ann. Nucl. Energy
,
49
, pp.
191
199
.10.1016/j.anucene.2012.05.035
11.
Polzin
,
K. A.
,
2007
, “
Liquid Metal Pump Technologies for Nuclear Surface Power
,”
Proceedings of Space Nuclear Conference 2007
, Boston, MA, June 24–28, pp. 363–369, accessed Jan. 10, 2021.
12.
Guidez
,
J.
,
Bodi
,
J.
,
Mikityuk
,
K.
,
Girardi
,
E.
,
Bittan
,
J.
,
Grah
,
A.
,
Tsige-Tamirat
,
H.
,
Romojaro
,
P.
,
Alvarez-Velarde
,
F.
, and
Carluec
,
B.
,
2021
, “
New Reactor Safety Measures for the European Sodium Fast Reactor—Part II: Preliminary Assessment
,”
ASME J. Nucl. Rad. Sci.
,
8
(
1
), p.
011312
.10.1115/1.4051723
13.
Fridman
,
E.
,
Alvarez-Velarde
,
F.
,
Romojaro
,
P.
,
Tsige-Tamirat
,
H.
,
Jimenez-Carrascosa
,
A.
,
Garcia-Herranz
,
N.
,
Bernard
,
F.
,
Gregg
,
R.
,
Davies
,
U.
,
Krepel
,
J.
,
Lindley
,
B.
,
Massara
,
S.
,
Poumerouly
,
S.
,
Girardi
,
E.
, and
Mikityuk
,
K.
,
2021
, “
Neutronic Analysis of the European Sodium Fast Reactor—Part II: Burnup Results
,”
ASME J. Nucl. Rad. Sci.
,
8
(
1
), p.
011302
.10.1115/1.4048765
14.
Bittan
,
J.
,
Bore
,
C.
, and
Guidez
,
J.
,
2021
, “
Preliminary Assessment of Decay Heat Removal Systems in the ESFR-SMART Design: The Role of Natural Air Convection Around Steam Generators Outer Shells in Accidental Conditions
,”
ASME J. Nucl. Rad. Sci.
,
7
(
4
), p.
041301
.10.1115/1.4048991
15.
Walker
,
A.
,
2016
, Natural Ventilation, WBDG—Whole Building Design Guide.
National Institute of Building Sciences
, Washington, DC, accessed Jan. 12, 2021, https://www.wbdg.org/resources/natural-ventilation
You do not currently have access to this content.