Abstract

In the paper, the reactivity characteristics of the core of the large sodium fast reactor Superphénix (SPX) were evaluated and compared with available experimental data. The analysis was performed using the TRACE system code modified for the fast reactor applications. The simplified core model was developed aiming to overcome the lack of detailed information on design and realistic core conditions. Point kinetics neutronic model with all relevant reactivity feedbacks was used to calculate transient power. The paper focuses on challenging issue of modeling of the transient thermal responses of primary system structural elements resulting in reactivity feedback specific to such large fast reactor, which cannot be neglected. For these effects, the model was equipped with dedicated heat structures to reproduce important feedback due to vessel wall, diagrid, strongback, control rod drive lines thermal expansion. Peculiarly, application of the model was considered for a whole range of core conditions from zero power to 100% nominal. The developed core model allowed reproducing satisfactorily the core reactivity balance between zero power at 180 °C and full power conditions. Additionally, the reactivity coefficients k, g, and h at three power levels (about 20, 50, and 80% of the nominal power) were calculated and satisfactory agreement with experimental measurements was also observed. The study demonstrated feasibility of application of relatively simple model with adjusted parameters for analysis of different conditions of very complex system. Reducing some differences with experimentally observed behavior of feedback coefficients, would require more sophisticated approaches on fuel pin model, more detailed information on management of control rods during power rise, more complicated models of primary system, its structural elements, and flow paths.

References

1.
GIF
, “
Generation IV International Forum Annual Report 2019
,” Generation IV International Forum, accessed Nov.
2020
, https://www.gen-4.org/gif/jcms/c_119034/gif-2019-annual-report
2.
IAEA,
2012
, “
Status of Fast Reactor Research and Technology Development
,” IAEA TECDOC Series, Vienna, Austria, Report No.
IAEA-TECDOC-1691
.https://www.iaea.org/publications/8667/status-of-fast-reactor-research-and-technology-development
3.
Guidez
,
J.
, and
Prêle
,
G.
,
2017
,
Superphenix: Technical and Scientific Achievements
,
Atlantis Press
,
Paris, France
.
4.
Mikityuk
,
K.
,
Girardi
,
E.
,
Krepel
,
J.
,
Bubelis
,
E.
,
Fridman
,
E.
,
Rineiski
,
A.
, and
Girault
,
N.
,
2017
, “
ESFR-SMART: New Horizon-2020 Project on SFR Safety
,”
International Conference on Fast Reactors and Related Fuel Cycle: Next Generation Nuclear Systems for Sustainable Development (FR17)
,
International Atomic Energy Agency
,
Yekaterinburg, Russia
, June
26
29
.https://www.researchgate.net/publication/315381003_ESFR-SMART_new_Horizon-2020_project_on_SFR_safety
5.
Ponomarev
,
A.
,
Bednarova
,
A.
, and
Mikityuk
,
K.
,
2018
, “
New Sodium Fast Reactor Neutronics Benchmark
,”
Proceedings of PHYSOR
,
Cancun, Mexico
, Apr. 22–26, pp.
3790
3805
.
6.
Gourdon
,
J.
,
Mesnage
,
B.
,
Voitellier
,
J. L.
, and
Suescun
,
M.
,
1990
, “
An Overview of Superphénix Commissioning Tests
,”
Nucl. Sci. Eng.
,
106
(
1
), pp.
1
10
.10.13182/NSE90-A23751
7.
Flamenbaum
,
G.
,
de Wouters
,
R.
,
Le Bourhis
,
A.
,
Newton
,
T.
, and
Vambenepe
,
G.
,
1990
, “
Superphénix Core-Loading Strategy Using the Checkerboard Pattern
,”
Nucl. Sci. Eng.
,
106
(
1
), pp.
11
17
.10.13182/NSE90-A23752
8.
Gauthier
,
J. C.
,
Cabrillat
,
J. C.
,
Palmiotti
,
G.
,
Salvatores
,
M.
,
Giese
,
M.
,
Carta
,
M.
, and
West
,
J. P.
,
1990
, “
Measurement and Predictions of Control Rod Worth
,”
Nucl. Sci. Eng.
,
106
(
1
), pp.
18
29
.10.13182/NSE90-02
9.
Vanier
,
M.
,
Bergeonneau
,
P.
,
Gauthier
,
J. C.
,
Jacob
,
M.
,
de Antoni
,
J.
,
Gesi
,
E.
,
Peerani
,
P.
, and
Adam
,
J. P.
,
1990
, “
Superphénix Reactivity Feedback and Coefficients
,”
Nucl. Sci. Eng.
,
106
(
1
), pp.
30
36
.10.13182/NSE90-A23754
10.
Bergeonneau
,
P.
,
Vanier
,
M.
,
Favet
,
M.
,
De Antoni
,
J.
,
Essig
,
K.
, and
Adam
,
J. P.
,
1990
, “
An Analysis of the Dynamic Behavior of the Core
,”
Nucl. Sci. Eng.
,
106
(
1
), pp.
69
74
.10.13182/NSE90-A23759
11.
Mikityuk
,
K.
,
Pelloni
,
S.
,
Coddington
,
P.
,
Bubelis
,
E.
, and
Chawla
,
R.
,
2005
, “
FAST: An Advanced Code System for FAST Reactor Transient Analysis
,”
Ann. Nucl. Energy
,
32
(
15
), pp.
1613
1631
.10.1016/j.anucene.2005.06.002
12.
Mikityuk
,
K.
,
Krepel
,
J.
,
Pelloni
,
S.
,
Girardin
,
G.
,
Chenu
,
A.
,
Sun
,
K.
,
Alonso
,
M.
,
Marinoni
,
A.
,
Adams
,
R.
,
Reiterer
,
F.
, and
Monti
,
S.
, eds.,
2015
,
Fast Code System: Review of Recent Applications
,
International Atomic Energy Agency (IAEA)
,
Vienna, Austria
.
13.
Leppanen
,
J.
,
Pusa
,
M.
,
Viitanen
,
T.
,
Valtavirta
,
V.
, and
Kaltiaisenaho
,
T.
,
2015
, “
The Serpent Monte Carlo Code: Status, Development and Applications in 2013
,”
Ann. Nucl. Energy
,
82
, pp.
142
150
.10.1016/j.anucene.2014.08.024
14.
Ponomarev
,
A.
, and
Mikityuk
,
K.
,
2019
, “
Analysis of Hypothetical Unprotected Loss of Flow in Superphénix Start-Up Core: Sensitivity to Modeling Details
,”
Proceedings of the 27th International Conference on Nuclear Engineering (ICONE-27)
,
Tsukuba International Congress Center
,
Tsukuba, Ibaraki, Japan
, The Japan Society of Mechanical Engineers, May 19-24.10.1299/jsmeicone.2019.27.2050
15.
Ponomarev
,
A.
,
Mikityuk
,
K.
,
Zhang
,
L.
,
Nikitin
,
E.
,
Fridman
,
E.
,
Álvarez Velarde
,
F.
,
Romojaro Otero
,
P.
,
Jiménez-Carrascosa
,
A.
,
Garcia Herranz
,
N.
,
Lindley
,
B.
,
Baker
,
U.
,
Seubert
,
A.
, and
Henry
,
R.
,
2021
, “
Superphènix Benchmark Part I: Results of Static Neutronics
,”
ASME J. Nucl. Eng. Radiat. Sci.
(Accepted) .10.1115/1.4051449
16.
Bernard
,
A.
,
Masoni
,
P.
, and
Van Dorsselaere
,
J. P.
,
1983
, “
Mechanical Behavior of a Fast Reactor Core. Application of the 3D Codes to SUPERPHENIX 1
,”
IASMiRT
,
Chicago, IL
, Aug. 22–26, Paper No. C7-2, pp.
265
272
.http://www.lib.ncsu.edu/resolver/1840.20/25859
17.
Mikityuk
,
K.
, and
Schikorr
,
M.
,
2013
, “
New Transient Analysis of the Superphénix tart-Up Tests
,”
Proceedings of International Conference on Fast Reactors and Related Fuel Cycles: Safe Technologies and Sustainable Scenarios (FR'13)
,
Paris, France
, Mar. 4–7, No. IAEA-CN-199/297155.
You do not currently have access to this content.