Abstract

Sequential He+ and Ni+ implantations were performed to investigate their combined effect on the indentation hardness of heat-treated X750 alloy. The microstructure of the ion-implanted region was also characterized with transmission electron microscope (TEM). The X750 alloy displayed a pronounced softening with very low Ni+ implantation levels, ψ = 0.01–1.0 dpa, however it showed a clear increase in hardness when implanted with He+ up to CHe = 5000 appm. Samples subjected to sequential He+ and Ni+ implantations displayed hardness values between those presented by sole He+ or Ni+ implantation suggesting that the effects of ion-induced microstructural damage and helium accumulation on the hardness of this alloy can be considered as independent and additive over the range of conditions studied. This observation is in contradiction to previously reported TEM-based studies, which suggest that accumulated helium slows the dissolution/disordering of the γ′ hardening phase in this alloy. In our study, established theories were applied to assess the contribution of ion-induced defect clustering, γ′ precipitate disordering, and helium bubble accumulation to the hardness of the X750 alloy. It was observed that generation of ion-induced defect clusters and the formation of helium bubbles increased the indentation hardness slightly while the disordering of γ′ precipitates resulted in a dramatic decrease in the total hardness. Ni+ and He+ implantation also had different effects on the depth dependence of the indentation hardness indentation size effect (ISE). The ISE was pronounced in the samples subjected to only Ni+ implantation while it was almost absent in samples subjected to only He+ implantation.

References

1.
Griffiths
,
M.
,
2013
, “
The Effect of Irradiation on Ni-Containing Components in CANDU ® Reactor Cores: A Review
,”
AECL Nucl. Rev.
,
2
(
1
), pp.
1
16
.10.12943/ANR.2013.00001
2.
Zhang
,
H. K.
,
Yao
,
Z.
,
Kirk
,
M. A.
, and
Daymond
,
M. R.
,
2014
, “
Stability of Ni3(Al, Ti) Gamma Prime Precipitates in a Nickel-Based Superalloy Inconel X-750 Under Heavy Ion Irradiation
,”
Metall. Mater. Trans. A
,
45
(
8
), pp.
3422
3428
.10.1007/s11661-014-2309-y
3.
Changizian
,
P.
,
Lu
,
C.
,
Yao
,
Z.
, and
Wang
,
L. M.
,
2017
, “
Indentation Behaviour of Ion-Irradiated X-750 Ni- Based Superalloy
,”
Philos. Mag.
,
97
(
3
), pp.
101
109
.10.1080/09500839.2017.1288941
4.
Griffiths
,
M.
,
Bickel
,
G. A.
,
Donohue
,
S. A.
,
Feenstra
,
P.
,
Judge
,
C. D.
,
Poff
,
D.
,
Walters
,
L.
,
Wright
,
M. D.
,
Greenwood
,
L.
, and
Garner
,
F. A.
,
2013
,
16th International Conference on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors in Degradation of Ni-Alloy Components in CANDU Reactor Cores
, Asheville, NC, Aug. 11–15, Paper No. #127000-002.
5.
Knapp
,
J. A.
,
Follstaedt
,
D. M.
, and
Myers
,
S. M.
,
2008
, “
Hardening by Bubbles in He-Implanted Ni
,”
J. Appl. Phys.
,
103
(
1
), p.
013518
.10.1063/1.2831205
6.
Hashimoto
,
N.
,
Hunn
,
J. D.
,
Byun
,
T. S.
, and
Mansur
,
L. K.
,
2003
, “
Microstructural Analysis of Ion-Irradiation-Induced Hardening in Inconel 718
,”
J. Nucl. Mater.
,
318
, pp.
300
306
.10.1016/S0022-3115(03)00013-8
7.
Zhang
,
H.
,
Yao
,
Z.
,
Daymond
,
M. R.
, and
Kirk
,
M. A.
,
2014
, “
Cavity Morphology in a Ni Based Superalloy Under Heavy Ion Irradiation With Cold Pre-Injected Helium-I
,”
J. Appl. Phys.
,
115
(
10
), p.
103508
.10.1063/1.4867637
8.
Changizian
,
P.
,
Zhang
,
H. K.
, and
Yao
,
Z.
,
2015
, “
Effect of Simultaneous Helium Implantation on the Microstructure Evolution of Inconel X-750 Superalloy During Dual-Beam Irradiation
,”
Philos. Mag.
,
95
(
35
), pp.
3933
3949
.10.1080/14786435.2015.1109152
9.
Judge
,
C. D.
,
Gauquelin
,
N.
,
Walters
,
L.
,
Wright
,
M.
,
Cole
,
J. I.
,
Madden
,
J.
,
Botton
,
G. A.
, and
Griffiths
,
M.
,
2015
, “
Intergranular Fracture in Irradiated Inconel X-750 Containing Very High Concentrations of Helium and Hydrogen
,”
J. Nucl. Mater.
,
457
, pp.
165
172
.10.1016/j.jnucmat.2014.10.008
10.
Tawfeeq
,
M. N.
, and
Klassen
,
R. J.
,
2019
, “
Effect of Ion Implantation on the Grain Boundary Strength of Heat Treated Inconel X750
,”
J. Nucl. Mater.
,
516
, pp.
255
263
.10.1016/j.jnucmat.2019.01.013
11.
Tawfeeq
,
M. N.
, and
Klassen
,
R. J.
,
2020
, “
Ni+ and He+ Implantation Effects on the Hardness and Microstructure of Heat-Treated X750 Superalloy
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
7
(
1
), p.
011602
.10.1115/1.4046716
12.
Judge
,
C. D.
,
Bhakhri
,
V.
,
Jiao
,
Z.
,
Klassen
,
R. J.
,
Was
,
G.
,
Botton
,
G. A.
, and
Griffiths
,
M.
,
2017
, “
The Effects of Proton Irradiation on the Microstructural and Mechanical Property Evolution of Inconel X-750 With High Concentrations of Helium
,”
J. Nucl. Mater.
,
492
, pp.
213
226
.10.1016/j.jnucmat.2017.04.045
13.
Ken
,
H.
,
Yao
,
Z.
,
Judge
,
C.
, and
Griffiths
,
M.
,
2013
, “
Microstructural Evolution of CANDU Spacer Material Inconel X-750 Under in Situ Ion Irradiation
,”
J. Nucl. Mater.
,
443
(
1–3
), pp.
49
58
.10.1016/j.jnucmat.2013.06.034
14.
Changizian
,
P.
,
Brooks
,
A.
,
Yao
,
Z.
, and
Daymond
,
M. R.
,
2018
, “
Nano-Scale Mechanical Properties and Microstructure of Irradiated X-750 Ni-Based Superalloy
,”
Metall. Mater. Trans. A
,
49
(
2
), pp.
498
514
.10.1007/s11661-017-4445-7
15.
Kiener
,
D.
,
Minor
,
A. M.
,
Anderoglu
,
O.
,
Wang
,
Y.
,
Maloy
,
S. A.
, and
Hosemann
,
P.
,
2012
, “
Application of Small-Scale Testing for Investigation of Ion-Beam-Irradiated Materials
,”
J. Mater. Res.
,
27
(
21
), pp.
2724
2736
.10.1557/jmr.2012.303
16.
Pharr
,
G. M.
,
Herbert
,
E. G.
, and
Gao
,
Y.
,
2010
, “
The Indentation Size Effect: A Critical Examination of Experimental Observations and Mechanistic Interpretations
,”
Annu. Rev. Mater. Res.
,
40
(
1
), pp.
271
292
.10.1146/annurev-matsci-070909-104456
17.
Nix
,
W. D.
, and
Gao
,
H.
,
1998
, “
Indentation Size Effects in Crystalline Materials: A Law for Strain Gradient Plasticity
,”
J. Mech. Phys. Solids
,
46
(
3
), pp.
411
425
.10.1016/S0022-5096(97)00086-0
18.
Landau
,
P.
,
Guo
,
Q.
,
Hosemann
,
P.
,
Wang
,
Y.
, and
Greer
,
J. R.
,
2014
, “
A Deformation of as-Fabricated and Helium Implanted 100 nm-Diameter Iron Nano-Pillars
,”
Mater. Sci. Eng. A
,
612
, pp.
316
325
.10.1016/j.msea.2014.06.052
19.
Li
,
N.
,
Martin
,
M. S.
,
Anderoglu
,
O.
,
Misra
,
A.
,
Shao
,
L.
,
Wang
,
H.
, and
Zhang
,
X.
,
2009
, “
He Ion Irradiation Damage in Al/Nb Multilayers
,”
J. Appl. Phys.
,
105
(
12
), p.
123522
.10.1063/1.3138804
20.
Wang
,
Z.
,
Allen
,
F. I.
,
Shan
,
Z.
, and
Hosemann
,
P.
,
2016
, “
Mechanical Behavior of Copper Containing a Gas-Bubble Superlattice
,”
Acta Mater.
,
121
, pp.
78
84
.10.1016/j.actamat.2016.08.085
21.
Metals Special Corporation
,
2004
, “
INCONEL alloy X750
,”
Metals Special Corporation
, New York, pp.
1
28
.
22.
Zinkle
,
S. J.
, and
Matsukawa
,
Y.
,
2004
, “
Observation and Analysis of Defect Cluster Production and Interactions With Dislocations
,”
J. Nucl. Mater.
,
329–333
(
2004
), pp.
88
96
.10.1016/j.jnucmat.2004.04.298
23.
Byun
,
T. S.
,
Farrell
,
K.
, and
Li
,
M.
,
2008
, “
Deformation in Metals After Low-Temperature Irradiation: Part II—Irradiation Hardening, Strain Hardening, and Stress Ratios
,”
Acta Mater.
,
56
(
5
), pp.
1056
1064
.10.1016/j.actamat.2007.10.056
24.
Busby
,
J. T.
,
Hash
,
M. C.
, and
Was
,
G. S.
,
2005
, “
The Relationship Between Hardness and Yield Stress in Irradiated Austenitic and Ferritic Steels
,”
J. Nucl. Mater.
,
336
(
2–3
), pp.
267
278
.10.1016/j.jnucmat.2004.09.024
25.
Tabor
,
D.
,
1956
, “
The Physical Meaning of Indentation and Scratch Hardness
,”
Br. J. Appl. Phys.
,
7
(
5
), pp.
159
166
.10.1088/0508-3443/7/5/301
26.
Lucas
,
G. E.
,
1993
, “
The Evolution of Mechanical Property Change in Irradiated Austenitic Stainless Steels
,”
J. Nucl. Mater.
,
206
(
2–3
), pp.
287
305
.10.1016/0022-3115(93)90129-M
27.
Sun
,
C.
,
Kirk
,
M.
,
Li
,
M.
,
Hattar
,
K.
,
Wang
,
Y.
,
Anderoglu
,
O.
,
Valdez
,
J.
,
Uberuaga
,
B. P.
,
Dickerson
,
R.
, and
Maloy
,
S. A.
,
2015
, “
Chemistry and Mechanical Properties of Ni-Based Superalloy Rene N4 Under Irradiation at Room Temperature
,”
Acta Mater.
,
95
, pp.
357
365
.10.1016/j.actamat.2015.04.061
28.
Ardell
,
A. J.
, and
Angeles
,
L.
,
1985
, “
Precipitation Hardening
,”
Metall. Mater. Trans.
,
16
(
12
), pp.
2131
2165
.10.1007/BF02670416
29.
De. Valle
,
J. A.
,
Picasso
,
A. C.
,
Alvarez
,
I.
, and
Romero
,
R.
,
1999
, “
Age-Hardening Behavior of Inconel X-750 Superalloy
,”
Scr. Mater.
,
41
(
3
), pp.
237
243
.10.1016/S1359-6462(99)00151-7
30.
Rowcliffe
,
A. F.
,
Mansur
,
L. K.
,
Hoelzer
,
D. T.
, and
Nanstad
,
R. K.
,
2009
, “
Perspectives on Radiation Effects in Nickel-Base Alloys for Applications in Advanced Reactors
,”
J. Nucl. Mater.
,
392
(
2
), pp.
341
352
.10.1016/j.jnucmat.2009.03.023
31.
Hardie
,
C. D.
,
Williams
,
C. A.
,
Xu
,
S.
, and
Roberts
,
S. G.
,
2013
, “
Effects of Irradiation Temperature and Dose Rate on the Mechanical Properties of Self-Ion Implanted Fe and Fe – Cr Alloys
,”
J. Nucl. Mater.
,
439
(
1–3
), pp.
33
40
.10.1016/j.jnucmat.2013.03.052
32.
Nelson
,
R. S.
,
Hudson
,
J. A.
, and
Mazey
,
D. J.
,
1972
, “
The Stability of Precipitates in an Irradiation Environment
,”
J. Nucl. Mater.
,
44
(
3
), pp.
318
330
.10.1016/0022-3115(72)90043-8
33.
Camus
,
E.
,
Abromeit
,
C.
,
Bourdeau
,
F.
,
Wanderka
,
N.
, and
Wollenberger
,
H.
,
1996
, “
Evolution of Long-Range Order and Composition for Radiation-Induced Precipitate Dissolution
,”
Phys. Rev. B
,
54
(
5
), pp.
3142
3150
.10.1103/PhysRevB.54.3142
34.
Hosemann
,
P.
,
Shin
,
C.
, and
Kiener
,
D.
,
2015
, “
Small Scale Mechanical Testing of Irradiated Materials
,”
J. Mater. Res.
,
30
(
9
), pp.
1231
1245
.10.1557/jmr.2015.26
35.
Prasitthipayong
,
A.
,
Vachhani
,
S. J.
,
Tumey
,
S. J.
,
Minor
,
A. M.
, and
Hosemann
,
P.
,
2018
, “
Indentation Size Effect in Unirradiated and Ion-Irradiated 800H Steel at High Temperatures
,”
Acta Mater.
,
144
, pp.
896
904
.10.1016/j.actamat.2017.11.001
36.
Fu
,
Z. Y.
,
Liu
,
P. P.
,
Wan
,
F. R.
, and
Zhan
,
Q.
,
2015
, “
Helium and Hydrogen Irradiation Induced Hardening in CLAM Steel
,”
Fusion Eng. Des.
,
91
, pp.
73
78
.10.1016/j.fusengdes.2015.01.001
37.
Mills
,
R. L.
,
Liebenberg
,
D. H.
, and
Bronson
,
J. C.
,
1980
, “
Equation of State and Melting Properties 4He From Measurements to 20 Kbar
,”
Phys. Rev. B
,
21
(
11
), pp.
5137
5148
.10.1103/PhysRevB.21.5137
38.
Guo
,
Q.
,
Landau
,
P.
,
Hosemann
,
P.
,
Wang
,
Y.
, and
Greer
,
J. R.
,
2013
, “
Helium Implantation Effects on the Compressive Response of Cu Nanopillars
,”
Nano. Micro. Small
,
9
(
5
), pp.
691
696
.10.1002/smll.201201614
You do not currently have access to this content.