Abstract

Alloy 800H is a candidate material for supercritical water-cooled reactors (SCWR), specifically for in-core components in Canadian-type SCWR, that will operate at a pressure of 25 MPa and a core temperature from 350 °C to 625 °C. To evaluate this, several exposures to supercritical water took place at 395 °C and 25 MPa in a supercritical water loop (SCWL). The duration of each exposure was 500, 150, and 1000 h. Scanning electron microscopy (SEM) with electron backscatter diffraction (EBSD), in combination with Raman spectroscopy (RS) and X-ray diffraction (XRD), was used to evaluate the microstructure of alloy 800H after the exposures to supercritical water. All these methods confirmed the presence of magnetite and trevorite/chromite crystals, with a thickness of less than 1 μm, on the surface after each exposure. No significant change occurred after the second and third exposures. The matrix crystallography did not change during the exposures and demonstrated grain twinning with a grain size of 100–400 μm.

References

References
1.
Hayner
,
G. O.
,
Shaber
,
E. L.
,
Mizia
,
R. E.
,
Bratton
,
R. L.
,
Sowder
,
W. K.
,
Wright
,
R. N.
,
Windes
,
W. E.
,
Totemeier
,
T. C.
, and
Moore
,
K. A.
,
2004
, “Next Generation Nuclear Plant Materials Research and Development Program Plan,”
Idaho National Engineering and Environmental Laboratory
,
Bechtel BWXT Idaho
, ID, Report No.
INEEL/EXT-04-02347
.https://www.researchgate.net/publication/265272108_Next_Generation_Nuclear_Plant_Materials_Research_and_Development_Program_Plan
2.
Natesan
,
K.
,
Purohit
,
A.
, and
Tam
,
S. W.
,
2003
, “Materials Behavior in HTGR Environments,”
Office of Nuclear Regulatory Research
,
Washington, DC
, Report No. NUREG/CR-6824.
3.
Zhang
,
L.
,
Bao
,
Y.
, and
Tang
,
R.
,
2012
, “
Selection and Corrosion Evaluation Tests of Candidate SCWR Fuel Cladding Materials
,”
Nucl. Eng. Des.
,
49
, pp.
180
187
.10.1016/j.nucengdes.2011.08.086
4.
Kim
,
H.-G.
,
Kim
,
I.-H.
,
Jung
,
Y.-I.
,
Park
,
D.-J.
,
Park
,
J.-H.
,
Choi
,
B.-K.
, and
Lee
,
Y.-H.
,
2018
, “
Out-of-Pile Performance of Surface-Modified Zr Cladding for Accident Tolerant Fuel in LWRs
,”
J. Nucl. Mater..
510
, pp.
93
99
.10.1016/j.jnucmat.2018.07.061
5.
Dryepondt
,
S.
,
Unocic
,
K. A.
,
Hoelzer
,
D. T.
,
Massey
,
C. P.
, and
Pint
,
B. A.
,
2018
, “
Development of low-Cr ODS FeCrAl Alloys for Accident-Tolerant Fuel Cladding
,”
J. Nucl. Mater.
,
501
, pp.
59
71
.10.1016/j.jnucmat.2017.12.035
6.
Yun
,
M. H.
,
Ennis
,
J. P.
,
Nickel
,
H.
, and
Schuster
,
H.
,
1984
, “
The Effect of High Temperature Reactor Primary Circuit Helium on the Formation and Propagation of Surface Cracks in Alloy 800 H and Inconel 617
,”
J. Nucl. Mater.
,
125
(
3
), pp.
258
272
.10.1016/0022-3115(84)90553-1
7.
Tan
,
L.
,
Allen
,
T. R.
, and
Yang
,
Y.
,
2011
, “
Corrosion Behavior of Alloy 800H (Fe-21Cr-32Ni) in Supercritical Water
,”
Corros. Sci.
,
53
(
2
), pp.
703
711
.10.1016/j.corsci.2010.10.021
8.
Choudhry
,
K. I.
,
Guzonas
,
D. A.
,
Kallikragas
,
D. T.
, and
Svishchev
,
I. M.
,
2016
, “
On-Line Monitoring of Oxide Formation and Dissolution on Alloy 800H in Supercritical Water
,”
Corros. Sci.
,
111
, pp.
574
582
.10.1016/j.corsci.2016.05.042
9.
Akhiani
,
H.
,
Nezakat
,
M.
,
Pentilla
,
S.
, and
Szpunar
,
J.
,
2016
, “
Microstructural Effects on the Oxidation Behaviour of Alloy 800HT in Supercritical Water
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
2
(
2
), p.
021009
.10.1115/1.4031036
10.
Fulger
,
M.
,
Mihalache
,
M.
,
Ohai
,
D.
,
Fulger
,
S.
, and
Valeca
,
S. C.
,
2011
, “
Analyses of Oxide Films Grown on AISI 304 L Stainless Steel and Incoloy 800HT Exposed to Supercritical Water Environment
,”
J. Nucl. Mater.
,
415
(
2
), pp.
147
157
.10.1016/j.jnucmat.2011.05.007
11.
Was
,
G. S.
,
Ampornrat
,
P.
,
Gupta
,
G.
,
Teysseyre
,
S.
,
West
,
E. A.
,
Allen
,
T. R.
,
Sridharan
,
K.
,
Tan
,
L.
,
Chen
,
Y.
,
Ren
,
X.
, and
Pister
,
C.
,
2007
, “
Corrosion and Stress Corrosion Cracking in Supercritical Water
,”
J. Nucl. Mater.
,
371
(
1–3
), pp.
176
201
.10.1016/j.jnucmat.2007.05.017
12.
Tescan Orsay Holding,
2021
, “FIB SEM Tescan Lyra GMU,”
Tescan Orsay Holding, a.s
., Brno,
Czech Republic
,
accessed
Jan. 11,
2021
, http://www.microscopiaelettronica.it/images/50-microscopio_tescan-lyra3.pdf.
13.
Oxford Instruments,
2021
, “EDS X-Max80N, WDS Wave700 and EBSD NordlysMax3 system”
Oxford Instruments
,
Oxford, UK
,
accessed
Jan. 11, 2021, https://nano.oxinst.com/products/
14.
Malvern-PANalytical,
2021
, “
XRD—Empyrean III (Malvern-PANalytical, Netherlands)—Co Anode, PIXcel 3D Detector
,” Malvern, UK,
accessed
Jan. 11, 2021, https://www.malvernpanalytical.com/en/products/product-range/empyrean-range/empyrean
15.
Biagioni
,
C.
, and
Pasero
,
M.
,
2014
, “
The Systematics of Spinel-Type Minerals: An Overview
,”
Am. Miner.
,
99
(
7
), pp.
1254
1264
.10.2138/am.2014.4816
This content is only available via PDF.
You do not currently have access to this content.