Abstract

Measurement of physical properties of materials in extreme conditions, such as high temperature, is limited by technological challenges. Nevertheless, modeling of several phenomena relies on the existence of experimental data for their validation. In this study, a method suitable for determination of density in a liquid phase at high temperature is proposed and tested on Al2O3–ZrO2 system. A methodology for acquiring the temperature dependence of density for radioactive materials is proposed and is aimed to refine severe nuclear accidents modeling. The oxide was melted in an induction furnace with a cold crucible. The measurement was based on evaluation of the volume of the melt at different temperatures, in a range from 2100 to 2400 °C. The densities of the oxide in the solid-state and the skull-layer were measured using a pycnometer. A temperature dependence of the density was established and the results were compared with literature. The difference between existing data and the measured values in this work was less than 5%. Thus, the proposed methodology provides reliable density values in extreme conditions.

References

References
1.
Pye
,
L.
,
Montenero
,
A.
, and
Joseph
,
I.
,
2005
,
Properties of Glass-Forming Melts
,
Taylor & Francis
,
Boca Raton, FL
, Chap.
7
.
2.
Abel
,
L. A.
,
1990
,
ASM Handbook Vol. 2: Nonferrous Alloys and Special-Purpose Materials
,
ASM International
,
Material Park, OH
.
3.
Schwaneke
,
A. E.
, and
Falke
,
W. L.
,
1972
, “
Surface Tension and Density of Liquid Lead
,”
J. Chem. Eng. Data
,
17
(
3
), pp.
291
293
.10.1021/je60054a016
4.
Lee
,
J.
,
Kiyose
,
A.
,
Nakatsuka
,
S.
,
Nakamoto
,
M.
, and
Tanaka
,
T.
,
2004
, “
Improvements in Surface Tension Measurements of Liquid Metals Having Low Capillary Constants by the Constrained Drop Method
,”
ISIJ Int.
,
44
(
11
), pp.
1793
1799
.10.2355/isijinternational.44.1793
5.
Plevachuk
,
Y.
,
Sklyarchuk
,
V.
,
Yakymovych
,
A.
,
Eckert
,
S.
,
Willers
,
B.
, and
Eigenfeld
,
K.
,
2008
, “
Density, Viscosity, and Electrical Conductivity of Hypoeutectic Al-Cu Liquid Alloys
,”
Metall. Mater. Trans. A
,
39
(
12
), pp.
3040
3045
.10.1007/s11661-008-9659-2
6.
Drotning
,
W. D.
,
1979
, “
Thermal Expansion and Density Measurements of Molten and Solid Materials at High Temperatures by the Gamma Attenuation Technique
,”
Sandia Laboratories
,
Albuquerque, NM
, Report No. SAND 79-0074, SF 2900 Q (7-73).
7.
Paradis
,
P.-F.
,
Ishikawa
,
T.
, and
Yoda
,
S.
,
2005
, “
Electrostatic Levitation Research and Development at JAXA: Past and Present Activities in Thermophysics
,”
Int. J. Thermophys.
,
26
(
4
), pp.
1031
1049
.10.1007/s10765-005-6683-y
8.
Paradis
,
P.-F.
,
Ishikawa
,
T.
,
Saita
,
Y.
, and
Yoda
,
S.
,
2004
, “
Non-Contact Thermophysical Property Measurements of Liquid and Undercooled Alumina
,”
Jpn. J. Appl. Phys.
,
43
(
4A
), pp.
1496
1500
.10.1143/JJAP.43.1496
9.
Grishchenko
,
D.
, and
Piluso
,
P.
,
2011
, “
Recent Progress in the Gas-Film Levitation as a Method for Thermophysical Properties Measurements: Application to ZrO2-Al2O3 System
,”
High Temp. High Pressures
,
40
(
2
), pp.
127
150
.https://www.oldcitypublishing.com/journals/hthp-home/hthp-issue-contents/hthp-volume-40-number-2-2011/hthp-40-2-p-127-149/
10.
Glorieux
,
B.
,
Millot
,
F.
,
Rifflet
,
J. C.
, and
Coutures
,
J. P.
,
1999
, “
Density of Superheated and Undercooled Liquid Alumina by a Contactless Method
,”
Int. J. Thermophys.
,
20
(
4
), pp.
1085
1094
.10.1023/A:1022650703233
11.
Ohishi
,
Y.
,
Kargl
,
F.
,
Nakamori
,
F.
,
Muta
,
H.
,
Kurosaki
,
K.
, and
Yamanaka
,
S.
,
2017
, “
Physical Properties of Core-Concrete Systems: Al2O3-ZrO2 Molten Materials Measured by Aerodynamic Levitation
,”
J. Nucl. Mater.
,
487
, pp.
121
127
.10.1016/j.jnucmat.2017.02.002
12.
Haumesser
,
P.-H.
,
Bancillon
,
J.
,
Daniel
,
M.
,
Perez
,
M.
, and
Garandet
,
J.-P.
,
2002
, “
High-Temperature Contactless Viscosity Measurements by the Gas–Film Levitation Technique: Application to Oxide and Metallic Glasses
,”
Rev. Sci. Instrum.
,
73
(
9
), pp.
3275
3285
.10.1063/1.1499756
13.
Kondo
,
T.
,
Muta
,
H.
,
Kurosaki
,
K.
,
Kargl
,
F.
,
Yamaji
,
A.
,
Furuya
,
M.
, and
Ohishi
,
Y.
,
2019
, “
Density and Viscosity of Liquid ZrO2 Measured by Aerodynamic Levitation Technique
,”
Heliyon
,
5
(
7
), p.
e02049
.10.1016/j.heliyon.2019.e02049
14.
Nordine
,
P. C.
,
Weber
,
J. K. R.
, and
Abadie
,
J. G.
,
2000
, “
Properties of High-Temperature Melts Using Levitation
,”
Pure Appl. Chem.
,
72
(
11
), pp.
2127
2136
.10.1351/pac200072112127
15.
Foit
,
J. J.
,
Fischer
,
M.
,
Journeau
,
C.
, and
Langrock
,
G.
,
2014
, “
Experiments on MCCI With Oxide and Steel
,”
Ann. Nucl. Energy
,
74
, pp.
100
109
.10.1016/j.anucene.2014.06.025
16.
Eppinger
,
B.
,
Fieg
,
G.
,
Schütz
,
W.
, and
Stegmaier
,
U.
,
2001
, “
KATS Experiments to Simulate Corium Spreading in the EPR Core Catcher Concept
,”
Proceedings of the Ninth International Conference on Nuclear Engineering (ICONE-9), Nice, F, Institut für Kern- und Energietechnik (IKET)
, Apr. 8–12,
Paris
, KITopen-ID. 240049277.https://inis.iaea.org/collection/NCLCollectionStore/_Public/32/068/32068804.pdf
17.
Journeau
,
C.
,
Buffe
,
L.
,
Haquet
,
J. F.
,
Pilusu
,
P.
, and
Willermoz
,
G.
,
2015
, “
Needs for Large Mass Prototypic Corium Experiments: The PLINIUS-2 Platform
,”
NURETH—16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics
,
Chicago, IL
, Aug. 30–Sept. 4, pp.
4617
4630
.https://hal-cea.archives-ouvertes.fr/cea-02509240/document
18.
Bale
,
C. W.
,
Bélisle
,
E.
,
Chartrand
,
P.
,
Decterov
,
S. A.
,
Eriksson
,
G.
,
Gheribi
,
A. E.
,
Hack
,
K.
,
Jung
,
I.-H.
,
Kang
,
Y.-B.
,
Melançon
,
J.
,
Pelton
,
A. D.
,
Petersen
,
S.
,
Robelin
,
C.
,
Sangster
,
J.
,
Spencer
,
P.
, and
Van Ende
,
M.-A.
,
2020
, “
Thermochemical Software and Databases—2010–2016
,” accessed June 8, 2020, http://www.factsage.com/
19.
Dhanaraj
,
G.
,
Byrappa
,
K.
,
Prasad
,
V.
, and
Dudley
,
M.
,
2010
,
Handbook of Crystal Growth
,
Springer-Verlag
,
Berlin
, p.
1818
.
You do not currently have access to this content.