Abstract

A new heat transfer correlation for high temperature helium on the shell side of a helically coiled tube heat exchanger was derived with the use of computational fluid dynamics (CFD) tools. The use of suitable heat transfer correlations has an impact on the evaluation of performance of a heat exchanger in relation to the requirements for a sufficient heat transfer surface, which relates to material cost requirements; therefore, it is of high importance. A numerical model was validated with data measured using the helium cooler, which is part of an experimental channel located at the Research Center Řež (CVR) in the Czech Republic. The numerical model used for obtaining the heat transfer correlation assumes a constant heat flux on the wall of the helical coil. In total, 72 cases with varying inlet temperatures, velocities, and heat fluxes were simulated to obtain the heat transfer correlation. Furthermore, the effects of the flow rectifier within the channel regarding the heat transfer coefficient and pressure loss were discussed.

References

References
1.
Gnielinski
,
V.
,
2010
, “
VDI Heat Atlas
,”
VDI Heat Atlas
,
Berlin, Heidelberg
,
Springer, Berlin
, pp.
709
712
.
2.
Schmidt
,
E. F.
,
1967
, “
Wärmeübergang Und Druckverlust in Rohrschlangen
,”
Chem. Ing. Tech.
,
39
(
13)
, pp.
781
789.
3.
Berka
,
J.
,
Hlinčík
,
T.
,
Víden
,
I.
,
Hudský
,
T.
, and
Vít
,
J.
,
2015
, “
The Design and Utilization of a High Temperature Helium Loop and Other Facilities for the Study of Advanced Gas-Cooled Reactors in the Czech Republic
,”
Prog. Nucl. Energy
,
85
, pp.
156
163
.10.1016/j.pnucene.2015.06.003
4.
Berka
,
J.
,
Matěcha
,
J.
,
Černý
,
M.
,
Víden
,
I.
,
Sus
,
F.
, and
Hájek
,
P.
,
2012
, “
New Experimental Device for VHTR Structural Material Testing and Helium Coolant Chemistry Investigation – High Temperature Helium Loop in NRI Řež
,”
Nucl. Eng. Des.
,
251
, pp.
1
10
.10.1016/j.nucengdes.2011.10.045
5.
Chapin
,
D.
,
Kiffer
,
S.
, and
Nestell
,
J.
,
2004
, “
The Very High Temperature Reactor: A Technical Summary
,” MPR Associates,
Alexandria, VA
.
6.
Genić
,
S. B.
,
Jaćimović
,
B. M.
,
Jarić
,
M. S.
,
Budimir
,
N. J.
, and
Dobrnjac
,
M. M.
,
2012
, “
Research on the Shell-Side Thermal Performances of Heat Exchangers With Helical Tube Coils
,”
Int. J. Heat Mass Transfer
,
55
(
15–16
), pp.
4295
4300
.10.1016/j.ijheatmasstransfer.2012.03.074
7.
Moawed
,
M.
,
2011
, “
Experimental Study of Forced Convection From Helical Coiled Tubes With Different Parameters
,”
Energy Convers. Manage.
,
52
(
2
), pp.
1150
1156
.10.1016/j.enconman.2010.09.009
8.
Kharat
,
R.
,
Bhardwaj
,
N.
, and
Jha
,
R.
,
2009
, “
Development of Heat Transfer Coefficient Correlation for Concentric Helical Coil Heat Exchanger
,”
Int. J. Therm. Sci.
,
48
(
12
), pp.
2300
2308
.10.1016/j.ijthermalsci.2009.04.008
9.
Salimpour
,
M.
,
2009
, “
Heat Transfer Coefficients of Shell and Coiled Tube Heat Exchangers
,”
Exp. Therm. Fluid Sci.
,
33
(
2
), pp.
203
207
.10.1016/j.expthermflusci.2008.07.015
10.
Lemmon
,
E. W.
,
Bell
,
I. H.
,
Hubber
,
M. L.
, and
McLinden
,
M. O.
,
2010
, “
Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.0
,” National Institute of Standards and Technology, Gaithersburg, MD, NIST Standard Reference Database 23.
11.
ANSYS
®,
2020
, “
ANSYS Academic Research CFD, Release 19.1, Help System
,”
Fluent Theory Guide, ANSYS Inc.
,
Canonsburg, PA
.
12.
Orszag
,
S.
,
Yakhot
,
A. V.
,
Flannery
,
W.
,
Boysan
,
S.
,
Choudhury
,
F.
,
Maruzewski
,
D. J.
, and
Patel
,
B.
,
1993
, “
Renormalization Group Modeling and Turbulence Simulations
,”
International Conference on Near-Wall Turbulent Flows
,
Tempe, AZ
, Mar.
15
17
.
You do not currently have access to this content.