Abstract

Numerous studies are on-going on to understand the performance of generation IV (Gen IV) nuclear power plants (NPPs). The objective is to determine optimum operating conditions for efficiency and economic reasons in line with the goals of Gen IV. For Gen IV concepts such as the gas-cooled fast reactors (GFRs) and very-high temperature reactors (VHTRs), the choice of cycle configuration is influenced by component choices, the component configuration and the choice of coolant. The purpose of this paper to present and review current cycles being considered—the simple cycle recuperated (SCR) and the intercooled cycle recuperated (ICR). For both cycles, helium is considered as the coolant in a closed Brayton gas turbine configuration. Comparisons are made for design point (DP) and off-design point (ODP) analyses to emphasize the pros and cons of each cycle. This paper also discusses potential future trends, include higher reactor core outlet temperatures (COT) in excess of 1000 °C and the simplified cycle configurations.

References

1.
Locatelli
,
G.
,
Mancini
,
M.
, and
Todeschini
,
N.
,
2013
, “
Generation IV Nuclear Reactors: Current Status and Future Prospects
,”
Energy Policy
,
61
, pp.
1503
1520
.10.1016/j.enpol.2013.06.101
2.
Nuclear Research Advisory Committee and Generation IV International Forum,
2002
, “A Technology Roadmap for Generation IV Nuclear Energy Systems,” Nuclear Research Advisory Committee and Generation IV International Forum, Washington D.C.
3.
Carre
,
F.
,
Yvon
,
P.
,
Anzieu
,
P.
,
Chauvin
,
N.
, and
Malo
,
J.-Y.
,
2010
, “
Update of the French R&D Strategy on Gas-Cooled Reactors
,”
Nucl. Eng. Des.
,
240
(
10
), pp.
2401
2408
.10.1016/j.nucengdes.2010.02.042
4.
Decher
,
R.
,
1989
, “
Brayton Cycles With Reciprocated Work Components
,”
25th Joint Propulsion Conference
, Monterey, CA, July 12–16.
5.
Gad-Briggs
,
A.
, and
Pilidis
,
P.
,
2017
, “
Analyses of Simple and Intercooled Recuperated Direct Brayton Helium Gas Turbine Cycles for Generation IV Reactor Power Plants
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
3
(
1
), p.
011017
.10.1115/1.4033398
6.
Gad-Briggs
,
A.
,
Pilidis
,
P.
, and
Nikolaidis
,
T.
,
2017
, “
Analyses of a High Pressure Ratio Intercooled Direct Brayton Helium Gas Turbine Cycle for Generation IV Reactor Power Plants
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
3
(
1
), p.
011021
.10.1115/1.4034479
7.
Gad-Briggs
,
A.
,
Pilidis
,
P.
, and
Nikolaidis
,
T.
,
2017
, “
A Review of the Turbine Cooling Fraction for Very High Turbine Entry Temperature Helium Gas Turbine Cycles for Generation IV Reactor Power Plants
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
3
(
2
), p.
021007
.10.1115/1.4035332
8.
Gad-Briggs
,
A.
, and
Pilidis
,
P.
,
2017
, “
Analyses of the Off-Design Point Performance of a High Pressure Ratio Intercooled Brayton Helium Gas Turbine Cycle for Generation IV Nuclear Power Plants
,”
ASME
Paper No. ICONE25-67715.10.1115/ICONE25-67715
9.
Gad-Briggs
,
A.
, and
Pilidis
,
P.
,
2017
, “
Analyses of Off-Design Point Performances of Simple and Intercooled Brayton Helium Recuperated Gas Turbine Cycles for Generation IV Nuclear Power Plants
,”
ASME
Paper No. ICONE25-67714.10.1115/ICONE25-67714
10.
Gad-Briggs
,
A.
,
Pilidis
,
P.
, and
Nikolaidis
,
T.
,
2017
, “
Analyses of the Control System Strategies and Methodology for Part Power Control of the Simple and Intercooled Recuperated Brayton Helium Gas Turbine Cycles for Generation IV Nuclear Power Plants
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
3
(
4
), p.
041016
.10.1115/1.4036737
11.
Gad-Briggs
,
A.
,
Pilidis
,
P.
, and
Nikolaidis
,
T.
,
2018
, “
A Review of Brayton Helium Gas Turbine Cycles for GFR and VHTR Generation IV Nuclear Power Plants
,”
ASME
Paper No. ICONE26-81681.10.1115/ICONE26-81681
12.
Thring
,
M. W.
,
1960
,
Nuclear Propulsion
,
Butterworth & Co
,
London
.
13.
Pradeepkumar
,
K.
,
Tourlidakis
,
N. A.
, and
Pilidis
,
P.
,
2001
, “
Analysis of 115 MW, 3-Shaft, Helium Brayton Cycle Using Nuclear Heat Source
,”
ASME
Paper No. 2001-GT-0523
. 10.1115/2001-GT-0523
14.
Gad-Briggs
,
A.
,
Pilidis
,
P.
, and
Nikolaidis
,
T.
,
2018
, “
Analyses of Long Term Off-Design Performance Strategy and Operation of a High Pressure Ratio Intercooled Brayton Helium Gas Turbine Cycle for Generation IV Nuclear Power Plants
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
4
(
4
), p.
041014
.10.1115/1.4040371
15.
Gad-Briggs
,
A.
,
Pilidis
,
P.
, and
Nikolaidis
,
T.
,
2017
, “
Analyses of the Load Following Capabilities of Brayton Helium Gas Turbine Cycles for Generation IV Nuclear Power Plants
,”
J. Nucl. Eng. Radiat. Sci.
,
3
(
4
), p.  
041017
.10.1115/1.4036983
16.
SatoYan
,
H.
,
Ohashi
,
X.
, and
Tachibana
,
H. Y.
,
2012
, “
Control Strategies for VHTR Gas-Turbine System With Dry Cooling
,”
ASME
Paper No. ICONE20-POWER2012-54351.10.1115/ICONE20-POWER2012-54351
17.
Yan
,
X. L.
,
2016
, “
Very High-Temperature Reactor
,”
Handbook of g Nuclear Reactors
, 1st ed.,
Woodhead Publishing
,
Duxford, UK
,
I. L.
Pioro
, ed., pp.
55
90
.
18.
Tsvetkov
,
P.
,
2016
, “
Gas-Cooled Fast Reactors
,”
Handbook of Generation IV Nuclear Reactors
, 1st ed.,
Woodhead Publishing
,
Duxford, UK
,
I. L.
Pioro
, ed., pp.
91
96
.
19.
Bhargava
,
R. K.
,
Bianchi
,
M.
,
De Pascale
,
A.
,
Montenegro
,
G. N.
, and
Peretto
,
A.
,
2007
, “
Gas Turbine Based Power Cycles - A State-of-the-Art Review
,”
Challenges of Power Engineering and Environment
, 1st ed.,
Spinger
,
Berlin,
pp.
309
319
.
20.
Gad-Briggs
,
A.
,
Nikolaidis
,
T.
, and
Pilidis
,
P.
,
2017
, “
Analyses of the Effect of Cycle Inlet Temperature on the Precooler and Plant Efficiency of the Simple and Intercooled Helium Gas Turbine Cycles for Generation IV Nuclear Power Plants
,”
Appl. Sci.
,
7
(
4
), p.
319
.10.3390/app7040319
21.
INL
,
2013
, “Next Generation Nuclear Fuel Withstands High-Temperature Accident Conditions,” INL News Release, Idaho National Laboratory, Idaho Falls, ID.
22.
Stone
,
B.
,
2011
, “INL team helps pave way to Generation IV reactor,” Idaho National Laboratory, Idaho, ID.
23.
Gad-Briggs
,
A.
,
Pilidis
,
P.
, and
Nikolaidis
,
T.
,
2019
, “
Analyses of the Costs Associated With Very High Turbine Entry Temperatures in Helium Recuperated Gas Turbine Cycles for Generation IV Nuclear Power Plants
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
5
(
1
), p.
011019
.10.1115/1.4041276
You do not currently have access to this content.