Abstract

Atmospheric dispersion modeling and radiation dose calculation have been performed for a generic 1000 MW water-water energy reactor (VVER-1000) assuming a hypothetical loss of coolant accident (LOCA). Atmospheric dispersion code, International Radiological Assessment System (InterRAS), was employed to estimate the radiological consequences of a severe accident at a proposed nuclear power plant (NPP) site. The total effective dose equivalent (TEDE) and the ground deposition were calculated for various atmospheric stability classes, A to F, with the site-specific averaged meteorological conditions. From the analysis, 3.7×101 Sv was estimated as the maximum TEDE corresponding to a downwind distance of 0.1 km within the dominating atmospheric stability class (class A) of the proposed site. The intervention distance for evacuation (50 mSv) and sheltering (10 mSv) were estimated for different stability classes at different distances. The intervention area for evacuation ended at 0.5 km and that for sheltering at 1.5 km. The results from the study show that designated area for public occupancy will not be affected since the estimated doses were below the annual regulatory limits of 1 mSv.

References

1.
Crick
,
M.
,
1996
, “
Nuclear and Radiation Safety: Guidance for Emergency Response
,”
Int. At. Energy Agency Bull.
,
38
(
1
), pp.
23
27
.https://pdfs.semanticscholar.org/4b6b/6a63e996a6839751c7330964ed379d3ec720.pdf
2.
Hussain
,
M.
,
Khan
,
S. U. D.
, and
Syed
,
W.
,
2012
, “
Estimation of Emergency Planning Zones for Nuclear Research Reactor Using Plume Dispersion Code
,”
ASME Paper No. ICONE20-POWER2012-54964
.10.1115/ICONE20-POWER2012-54964
3.
Shamsuddin
,
S. D.
,
Basri
,
N. A.
,
Omar
,
N.
,
Meng Hock
,
K.
,
Ramli
,
A. T.
, and
Hassan
,
W. M. S. W.
,
2017
, “
Radioactive Dispersion Analysis for Hypothetical Nuclear Power Plant (NPP) Candidate Site in Perak State, Malaysia
,”
EPJ Web Conf., EDP Sci.
,
156
, p.
00009
.10.1051/epjconf/201715600009
4.
Cao
,
B.
,
Cui
,
W.
,
Rasheed
,
I.
, and
Chen
,
Y.
,
2018
, “
Atmospheric Dispersion Modelling and Radiological Safety Analysis for a Hypothetical Accident of Liquid-Fuel Thorium Molten Salt Reactor (TMSR-LF)
,”
Bulgarian Chem. Commun.
,
50
(
Special Issue G
), pp.
78
85
.https://www.researchgate.net/publication/331638272_Atmospheric_dispersion_modelling_and_radiological_safety_analysis_for_a_hypothetical_accident_of_liquid-fuel_thorium_molten_salt_reactor_TMSR-LF
5.
Homann
,
S. G.
, and
Aluzzi
,
F.
,
2013
, “
HotSpot Health Physics Code, Version 3.0, User's Guide
,” National Atmospheric Release Advisory Center, Lawrence Livermore National Laboratory, Livermore, CA, p. 198, Report No.
LLNL-SM-636474
.https://narac.llnl.gov/content/assets/docs/HotSpot-UserGuide-3-0.pdf
6.
Cao
,
B.
,
Zheng
,
J.
, and
Chen
,
Y.
,
2016
, “
Radiation Dose Calculations for a Hypothetical Accident in Xianning Nuclear Power Plant
,”
Sci. Technol. Nucl. Installations
,
2016
(
3105878
), pp.
1
6
.10.1155/2016/3105878
7.
ICRP,
2007
, “
ICRP Publication 103: The 2007 Recommendations of the International Commission on Radiological Protection
,”
Ann. ICRP
,
37
(
2.4
), p.
2
.http://www.icrp.org/docs/ICRP_Publication_103-Annals_of_the_ICRP_37(2-4)-Free_extract.pdf
8.
Sangiorgi
,
M.
,
Grah
,
A.
,
Pascal
,
G.
,
Zdarek
,
J.
,
Duspiva
,
J.
,
Batek
,
D.
,
Vyskocil
,
L.
,
Melnikov
,
I.
,
Merkulov
,
V.
,
Fichot
,
F.
,
Matejovic
,
P.
,
Grudev
,
P.
,
Ezzidi
,
A.
,
Bajard
,
S.
,
Bakouta
,
N.
,
Jamet
,
M.
,
Le Guennic
,
C.
,
Buck
,
M.
,
Rashkov
,
K.
,
Ivanov
,
I.
,
Kaleychev
,
P.
, and
Nieminen
,
A.
,
2016
,
In-Vessel Melt Retention (IVMR) Analysis of a VVER-1000 NPP; EUR 27951 EN
,
Publications Office of the European Union
, p.
252
.
9.
International Atomic Energy Agency
,
1997
, “
Generic Assessment Procedures for Determining Protective Actions during a Reactor Accident
,” IAEA, Vienna, Austria, Report No. IAEA-TECDOC-955.
10.
Sehgal
,
B. R.
, ed.,
2012
,
Nuclear Safety in Light Water Reactors: Severe Accident Phenomenology
,
Academic Press
, p.
740
.
11.
Birikorang
,
S. A.
,
Abrefah
,
R.
, and
Obeng
,
H.
,
2018
, “
Radiological Dose Assessment for the Ghana Research Reactor-1 at Shutdown Using Dispersion Model: Conversion From High-Enriched Uranium to Low-Enriched Uranium Fuel
,”
Environ. Res., Eng. Manage.
,
74
(
1
), pp.
21
35
.10.5755/j01.erem.74.1.19948
12.
Zoras
,
S.
,
Triantafyllou
,
A.
, and
Deligiorgi
,
D.
,
2006
, “
Atmospheric Stability and PM10 Concentrations at Far Distance From Elevated Point Sources in Complex Terrain: Worst-Case Episode Study
,”
J. Environ. Manage.
,
80
(
4
), pp.
295
302
.10.1016/j.jenvman.2005.09.010
13.
Arya
,
S. P.
,
1999
,
Air Pollution Meteorology and Dispersion
, Vol.
6
,
Oxford University Press
,
New York
, p.
320
.
14.
Wark
,
K.
,
Warner
,
C. F.
, and
Wayne
,
T. D.
,
1998
,
Air Pollution: Its Origin and Control
, 3rd ed.,
Addison-Wesley
,
Boston, MA
, pp.
168
169
.
15.
Tusheva
,
P.
,
Schäfer
,
F.
,
Reinke
,
N.
,
Altstadt
,
E.
, and
Kliem
,
S.
,
2012
, “
Study on Severe Accidents and Countermeasures for VVER-1000 Reactors Using the Integral Code ASTEC
,”
Kerntechnik
,
77
(
4
), pp.
271
277
.10.3139/124.110253
16.
Tusheva
,
P.
,
Schäfer
,
F.
,
Reinke
,
N.
,
Altstadt
,
E.
,
Rohde
,
U.
,
Weiss
,
F. P.
, and
Hurtado
,
A.
,
2010
, “
Investigation on Primary Side Oriented Accident Management Measures in a Hypothetical Station Blackout Scenario for a VVER-1000 Pressurized Water Reactor
,”
Kerntechnik
,
75
(
1–2
), pp.
12
19
.10.3139/124.110077
17.
Van Dorsselaere
,
J.-P.
,
Albiol
,
T.
, and
Micaelli
,
J.-C.
,
2011
, “
Research on Severe Accidents in Nuclear Power Plants, Nuclear Power—Operation, Safety and Environment, Dr. Pavel Tsvetkor (Ed
.),” InTech, Rijeka, Croatia, pp.
155
182
, Jan. 23, 2019, https://www.intechopen.com/books/nuclear-power-operation-safety-and-environment/research-on-severe-accidents-in-nuclear-power-plants
18.
McKenna
,
T.
, and
Glitter
,
J.
,
1988
, Source Term Estimation During Incident Response to Severe,”
Office for Analysis and Evaluation of Operational Data, Nuclear Regulatory Commission
,
Washington DC
, p.
175
, Report No. Nuclear Power Plant Accidents: NUREG-1228.
19.
McGuire
,
S. A.
,
Ramsdell
,
J.
, and
Athey
,
G.
,
2007
,
RASCAL 3.0. 5: Description of Models and Methods
,
Office of Nuclear Security and Incident Response, U.S. Nuclear Regulatory Commission
,
Washington, DC
, p.
154
.
20.
International Atomic Energy Agency (IAEA)
,
2014
,
Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards, General Safety Requirements, IAEA Safety Standards Series No. GSR Part 3
,
International Atomic Energy Agency
,
Vienna, Austria
, p.
471
.
21.
International Atomic Energy Agency
,
2013
,
Actions to Protect the Public in an Emergency Due to Severe Conditions at a Light Water Reactor. EPR-NPP PUBLIC PROTECTIVE ACTIONS
,
International Atomic Energy Agency (IAEA)
,
Vienna, Austria
, p.
135
.
You do not currently have access to this content.