Abstract

This work builds on the iodine-induced stress corrosion cracking (ISCC) model of Lewis and Kleczek by integrating the fuel performance model fuel and sheath modeling tool (FAST) to provide thermal and mechanical analysis of the fuel sheath, which was previously required as input parameters. The iodine transport methodology of the Lewis–Kleczek model has been modified to utilize the more mechanistic diffusion model in FAST, and an empirical surface multiplier term has been derived to predict iodine release rates under normal operating conditions based on measured release rates from in-reactor sweep gas tests. A fracture mechanics analysis is implemented using threshold stress intensity values and crack growth rates reported in literature. A correlation to predict crack initiation has been derived by analysis of a database of power histories with known ISCC defects. This correlation is based on the change in sheath hoop strain during a power ramp and is shown to be more accurate at discerning failure versus nonfailure than the correlations used in the previous Lewis–Kleczek model and FUELOGRAMS. Failure time prediction of the model is compared against power ramp test FFO-104 performed at the National Research Experimental (NRX) reactor. Fuel failure is predicted to occur 27% faster than experimentally measured; failure time is explored in a series of sensitivity studies to suggest areas for further development. The model improvements represent a step forward in the mechanistic modeling of stress corrosion cracking (SCC) in pressurized heavy water reactor (PHWR) nuclear fuel.

References

1.
Piro
,
M.
,
Sunderland
,
D.
,
Livingston
,
S.
,
Sercombe
,
J.
,
Revie
,
W.
,
Quastel
,
A.
,
Terrani
,
K.
, and
Judge
,
C.
,
2017
, “
A Review of Pellet–Clad Interaction Behavior in Zirconium Alloy Fuel Cladding
,”
Reference Module in Materials Science and Materials Engineering
,
Elsevier
, Amsterdam, The Netherlands.
2.
Baurens
,
B.
,
Sercombe
,
J.
,
Riglet-Martial
,
C.
,
Desgranges
,
L.
,
Trotignon
,
L.
, and
Maugis
,
P.
,
2014
, “
3D Thermo-Chemical–Mechanical Simulation of Power Ramps With ALCYONE Fuel Code
,”
J. Nucl. Mater.
,
452
(
1–3
), pp.
578
594
.10.1016/j.jnucmat.2014.06.021
3.
Cottis
,
R.
,
2000
, “Guides to Good Practice in Corrosion Control—Stress Corrosion Cracking,”
National Physical Laboratory
,
Teddington, UK
, p.
16,
accessed Feb. 6, 2019, http://resource.npl.co.uk/docs/science_technology/materials/life_ management_of_materials/publications/online_guides/pdf/stress.pdf
4.
Lewis
,
B.
,
Thompson
,
W.
,
Kleczek
,
M.
,
Shaheen
,
K.
,
Juhas
,
M.
, and
Iglesias
,
F.
,
2011
, “
Modelling of Iodine-Induced Stress Corrosion Cracking in CANDU Fuel
,”
J. Nucl. Mater.
,
408
(
3
), pp.
209
223
.10.1016/j.jnucmat.2010.10.063
5.
Schuster
,
I.
,
Lemaigna
,
C.
, and
Jacques
,
J.
,
1995
, “
Testing and Modelling the Influence of Irradiation on Iodine-Induced Stress Corrosion Cracking of Zircaloy-4
,”
Nucl. Eng. Des.
,
156
(
3
), pp.
343
349
.10.1016/0029-5493(94)00958-2
6.
Cheadle
,
B.
,
1975
, The Physical Metallurgy of Zirconium Alloys,
Atomic Energy of Canada Limited
,
Chalk River, ON, Canada
, p.
187
, Report No.
CRNL-1208
.https://inis.iaea.org/collection/NCLCollectionStore/_Public/43/103/43103507.pdf
7.
Chan
,
P.
, and
Kaddatz
,
K.
,
1994
, “
How Does CANLUB Work?
,”
Proceedings of the 15th Annual Conference of the Canadian Nuclear Society
, Montreal, QC, Canada, June 5–8, p.
8
.
8.
Do
,
T.
,
Irving
,
K. G.
, and
Hocking
,
W. H.
,
2008
, “
Microchemical Study of High-Burnup CANDU Fuel by Imaging-XPS
,”
J. Nucl. Mater.
,
383
(
1–2
), pp.
34
40
.10.1016/j.jnucmat.2008.08.057
9.
IAEA-TECDOC,
2003
, “
Fuel Failure in Water Reactors: Causes and Mitigation
,”
Proceedings of a Technical Meeting in Bratislava, (IAEA TECDOC Series, Vienna, Austria)
, Slovakia, June 17–21, 2002, Paper No. IAEA-TECDOC-1345, accessed Feb. 6, 2019, https://www.iaea.org/publications/6801/fuel-failure-in-water-reactors-causes-and-mitigation
10.
Penn
,
W.
,
Lo
,
R.
, and
Wood
,
J.
,
1977
, “
CANDU Fuel—Power Ramp Performance Criterion
,”
Nucl. Technol.
,
34
(
2
), pp.
249
268
.10.13182/NT77-A39701
11.
daSilva
,
R.
,
1992
, “
CAFÉ: A Probabilistic Model for Predicting CANDU Fuel SCC Power Ramp Failures
,”
Third International Conference on CANDU Fuel
, Chalk River, Canada, Oct. 4–8, pp.
5
38
.https://inis.iaea.org/search/search.aspx?orig_q=RN:25064384
12.
Tayal
,
M.
,
1987
, “Modelling CANDU Fuel Under Normal Operating Conditions: ELESTRES Code Description,”
Atomic Energy of Canada Limited
,
Chalk River, Canada
, p.
30,
Report No. AECL-9331.
13.
Tayal
,
M.
,
1986
, “
FEAST: A Two-Dimensional Non-Linear Finite-Element Code for Calculating Stresses
,”
Seventh Annual Conference of the Canadian Nuclear Society
, Toronto, Canada, June 9–10, p.
10
.https://inis.iaea.org/search/search.aspx?orig_q=RN:22069925
14.
Tayal
,
M.
,
Hallgrimson
,
K.
,
MacQuarria
,
J.
,
Alavi
,
P.
,
Seto
,
S.
,
Kinoshita
,
Y.
, and
Nishimura
,
T.
,
1994
, “INTEGRITY: A Semi-Mechanistic Model for Stress Corrosion Cracking of Fuel,”
Atomic Energy of Canada Limited
,
Chalk River, ON, Canada
, p.
28
, Report No.
AECL-10792
.https://inis.iaea.org/collection/NCLCollectionStore/_Public/28/068/28068603.pdf
15.
EPRI
,
2004
, “Fuel Analysis and Licensing Code: Falcon Mod01, Theoretical and Numerical Bases, Vol.
1
,”
Electric Power Research Institute
,
Palo Alto, CA
, p.
246
, EPRI Report No. #1011307.
16.
Kleczek
,
M.
,
2010
, “
Thermodynamic and Kinetic Modelling of Iodine Induced Stress Corrosion Cracking in Nuclear Fuel Sheathing
,” M.Sc. thesis,
Department of Chemical Engineering, Royal Military College of Canada
, Kingston, ON, Canada.
17.
Prudil
,
A.
,
2014
, “
FAST: A Fuel and Sheath Modeling Tool for CANDU Fuel
,” Ph.D. thesis,
Department of Chemical Engineering, Royal Military College of Canada
, Kingston, ON, Canada.
18.
Prudil
,
A.
,
Lewis
,
B.
,
Chan
,
P.
, and
Baschuk
,
J.
,
2015
, “
Development and Testing of the FAST Fuel Performance Code: Normal Operating Conditions (Part 1)
,”
Nucl. Eng. Des.
,
282
, pp.
158
168
.10.1016/j.nucengdes.2014.09.036
19.
Prudil
,
A.
,
Lewis
,
B.
,
Chan
,
P.
,
Baschuk
,
J.
, and
Wowk
,
D.
,
2015
, “
Development and Testing of the FAST Fuel Performance Code: Transient Conditions (Part 2)
,”
Nucl. Eng. Des.
,
282
, pp.
169
177
.10.1016/j.nucengdes.2014.11.036
20.
Booth
,
A.
,
1957
, “A Method of Calculating Fission Gas Diffusion From UO2 Fuel and Its Application to the X-2-f Loop Test,”
Atomic Energy of Canada Limited
Chalk River, Canada
, p.
23,
Report No. AECL 496.
21.
White
,
R.
, and
Tucker
,
M.
,
1983
, “
A New Fission-Gas Release Model
,”
J. Nucl. Mater.
,
118
(
1
), pp.
1
38
.10.1016/0022-3115(83)90176-9
22.
White
,
R.
,
2001
, “
The Fractal Nature of the Surface of Uranium Dioxide: A Resolution of the Short-Lived/Stable Gas Release Dichotomy
,”
J. Nucl. Mater.
,
295
(
2–3
), pp.
133
138
.10.1016/S0022-3115(01)00571-2
23.
Lewis
,
B.
,
Hunt
,
C.
, and
Iglesias
,
F.
,
1990
, “
Source Term of Iodine and Noble Gas Fission Products in the Fuel-to-Sheath Gap of Intact Operating Nuclear Fuel Elements
,”
J. Nucl. Mater.
,
172
(
2
), pp.
197
205
.10.1016/0022-3115(90)90438-S
24.
Hastings
,
I.
,
Hunt
,
C.
,
Lipsett
,
J.
, and
Delaney
,
R.
,
1985
, “
Short-Lived Fission Product Release From UO2: Annular Versus Solid Pellets
,”
J. Nucl. Mater.
,
135
(
1
), pp.
115
121
.10.1016/0022-3115(85)90443-X
25.
Pastore
,
G.
,
Luzzi
,
L.
,
Marcello
,
V. D.
, and
Uffelen
,
P. V.
,
2013
, “
Physics-Based Modelling of Fission Gas Swelling and Release in UO2 Applied to Integral Fuel Rod Analysis
,”
Nucl. Eng. Des.
,
256
, pp.
75
86
.10.1016/j.nucengdes.2012.12.002
26.
Millett
,
P.
,
Tonks
,
M.
, and
Biner
,
S.
,
2012
, “
Grain Boundary Percolation Modeling of Fission Gas Release in Oxide Fuels
,”
J. Nucl. Mater.
,
424
(
1–3
), pp.
176
182
.10.1016/j.jnucmat.2012.03.006
27.
Sabogal-Suárez
,
D.
,
Alzate-Cardona
,
J. D.
, and
Restrepo-Parra
,
E.
,
2016
, “
Fission Gas Bubble Percolation on Crystallographically Consistent Grain Boundary Networks
,”
J. Nucl. Mater.
,
475
, pp.
81
86
.10.1016/j.jnucmat.2016.03.031
28.
Hastings
,
I.
,
Hunt
,
C.
,
Lipsett
,
J.
, and
Delaney
,
R.
,
1984
, “Short-Lived Fission Product Release From the Surface and Centre of Operating UO2 Fuel,”
Atomic Energy of Canada Limited
,
Chalk River, ON
, Canada, Report No. AECL-8353.
29.
Piro
,
M.
,
Sunderland
,
D.
,
Revie
,
W.
,
Livingston
,
S.
,
Dimayuga
,
I.
,
Douchant
,
A.
, and
Wright
,
M.
,
2018
, “
Potential Mitigation Strategies for Preventing Stress Corrosion Cracking Failure in High-Burnup CANDU Fuel
,”
CNL Nucl. Rev.
,
7
(
2
), pp.
127
146
.10.12943/CNR.2016.00011
30.
Chan
,
P.
,
1998
, “
Protective Coating to Reduce Stress Corrosion Cracking in Zirconium Alloy Sheathing
,” U.S. Patent No. CA9600907.
31.
Cox
,
B.
,
1990
, “
Environmentally-Induced Cracking of Zirconium Alloys—A Review
,”
J. Nucl. Mater.
,
170
(
1
), pp.
1
23
.10.1016/0022-3115(90)90321-D
32.
Park
,
S.
,
Kim
,
J.
,
Lee
,
M.
, and
Jeong
,
Y.
,
2008
, “
Effects of Microstructure and Alloying Elements on the Iodine-Induced Stress-Corrosion Cracking Behaviour of Nuclear Fuel Claddings
,”
J. Nucl. Mater.
,
376
(
1
), pp.
98
107
.10.1016/j.jnucmat.2008.01.024
33.
Liu
,
A.
,
1996
, “
Summary of Stress-Intensity Factors
,”
ASM Handbook (Fatigue And Fracture
, Vol.
19
,
ASM International
,
Cleveland, OH
, pp.
980
991
.
34.
Yaggee
,
F.
,
Mattas
,
R.
, and
Neimark
,
L. A.
,
1979
, “
Characterization of Irradiated Zircaloys: Susceptibility to Stress-Corrosion Cracking
,” Electric Power Research Institute,
Palo Alto
,
CA
, p.
116,
Report No. EPRI-NR-1155.
35.
Lampman
,
T.
, and
Gillespie
,
P.
,
2010
, “Assessment of Delayed Hydride Cracking in Used CANDU Fuel Bundles During Dry Storage,”
Nuclear Waste Management Organization
,
Toronto, Canada
, p.
32
, Report No. TR-2010-13.
36.
EPRI
,
2001
, “Fracture Toughness Data for Zirconium Alloys,”
Electric Power Research Institute
,
Palo Alto, CA
, p.
54
, Report No. #1001281.
37.
Cox
,
B.
,
1990
, “
Pellet-Cladding Interaction (PCI) Failures of Zirconium Alloy Fuel Cladding—A Review
,”
J. Nucl. Mater.
,
172
(
3
), pp.
249
292
.10.1016/0022-3115(90)90282-R
38.
Shaheen
,
K.
,
2007
, “
A Thermomechanical Model of CANDU Fuel
,” M.Sc. thesis,
Department of Chemical Engineering, Royal Military College of Canada
,
Kingston, ON, Canada
.
39.
Higgs
,
J.
,
Lewis
,
B.
,
Thompson
,
W.
, and
He
,
Z.
,
2007
, “
A Conceptual Model for the Fuel Oxidation of Defective Fuel
,”
J. Nucl. Mater.
,
366
(
1–2
), pp.
99
128
.10.1016/j.jnucmat.2006.12.050
You do not currently have access to this content.