Abstract

The prevailing meteorological conditions around the site of the proposed Rooppur Nuclear Power Plant have been studied vigorously. The in-depth perusal has revealed the existence of three seasons—summer, rainy, and winter with stability classes A, B, and A, respectively, during the day and F during the night. The eventual wind speed and direction of the seasons have been observed. Subsequent locations along the dispersion directions have been identified using googleearthpro, which includes highways, educational institution, medical centers, commercial area, etc. Dose contours corresponding to a source term equivalent to Fukushima accident have been created to verify the dispersion direction and perceive the plume arrival time in the designated locations using health physics code HotSpot. Strong dependency of plume arrival time on the stability classes has been observed, and lowest values are found for F stability class. Finally, some shelter houses are proposed to accommodate endangered inhabitants during emergency.

References

1.
Lamarsh
,
J. R.
, and
Baratta
,
A. J.
,
2001
,
Introduction to Nuclear Engineering
, 3rd ed.,
Prentice Hall
, Upper Saddle River,
NJ
, p.
710
.
2.
Katata
,
G.
,
Ota
,
M.
,
Terada
,
H.
,
Chino
,
M.
, and
Nagai
,
H.
,
2012
, “
Atmospheric Discharge and Dispersion of Radionuclides During the Fukushima Daiichi Nuclear Power Plant Accident—Part I: Source Term Estimation and Local-Scale Atmospheric Dispersion in Early Phase of the Accident
,”
J. Environ. Radioact.
,
109
, pp.
103
113
.10.1016/j.jenvrad.2012.02.006
3.
Srinivas
,
C. V.
,
Venkatesan
,
R.
,
Baskaran
,
R.
,
Rajagopal
,
V.
, and
Venkatraman
,
B.
,
2012
, “
Regional Scale Atmospheric Dispersion Simulation of Accidental Releases of Radionuclides From Fukushima Daiichi Reactor
,”
Atmos. Environ.
,
61
, pp.
66
84
.10.1016/j.atmosenv.2012.06.082
4.
An
,
H. Y.
,
Kang
,
Y. H.
,
Song
,
S. K.
, and
Kim
,
Y. K.
,
2016
, “
Atmospheric Dispersion Characteristics of Radioactive Materials According to the Local Weather and Emission Conditions
,”
J. Radiat. Prot. Res.
,
41
(
4
), pp.
315
327
.10.14407/jrpr.2016.41.4.315
5.
Choi
,
G. S.
,
Lim
,
J. M.
,
Lim
,
K. S.
,
Kim
,
K.
, and
Lee
,
J.
,
2018
, “
Characteristics of Regional Scale Atmospheric Dispersion Around Ki-Jang Research Reactor Using the Lagrangian Gaussian Puff Dispersion Model
,”
Nucl. Eng. Technol.
,
50
(
1
), pp.
68
79
.10.1016/j.net.2017.10.002
6.
Han
,
M. H.
,
Kim
,
E. H.
,
Suh
,
K. S.
,
Hwang
,
W. T.
, and
Choi
,
Y. G.
,
2001
, “
Site-Specific Atmospheric Dispersion Characteristics of Korean Nuclear Power Plant Sites
,”
J. Korean Assoc. Radiat. Prot.
,
26
(
3
), pp.
305
309
.https://www.researchgate.net/publication/264151611_SITE-SPECIFIC_ATMOSPHERIC_DISPERSION_CHARACTERISTICS_OF_KOREAN_NUCLEAR_POWER_PLANT_SITES
7.
Lee
,
J. K.
,
Kim
,
J. C.
,
Lee
,
K. J.
,
Belorid
,
M.
,
Beeley
,
P. A.
, and
Yun
,
J. I.
,
2014
, “
Assessment of Wind Characteristics and Atmospheric Dispersion Modeling of 137Cs on the Barakah NPP Area in the UAE
,”
Nucl. Eng. Technol.
,
46
(
4
), pp.
557
568
.10.5516/NET.09.2014.029
8.
Lee
,
G. B.
,
Lee
,
M. C.
, and
Song
,
Y. I.
,
1997
, “
A Study on Mesoscale Atmospheric Dispersion of Radioactive Particles Release From Nuclear Power Plants
,”
J. Radiat. Prot. Res.
,
22
(
4
), pp.
273
288
.10.1080/10934529909376888
9.
Baklanov
,
A.
,
Mahura
,
A.
,
Jaffe
,
D.
,
Thaning
,
L.
,
Bergman
,
R.
, and
Andres
,
R.
,
2002
, “
Atmospheric Transport Patterns and Possible Consequences for the European North After a Nuclear Accident
,”
J. Environ. Radioact.
,
60
(
1–2
), pp.
23
48
.10.1016/S0265-931X(01)00094-7
10.
Septiadi
,
D.
,
Sugeng
,
Y.
,
Sriyana
,
B. S.
,
Anzhar
,
K.
, and
Suntoko
,
H.
,
2018
, “
An Extreme Meteorological Events Analysis for Nuclear Power Plant (NPP) Siting Project at Bangka Island, Indonesia
,”
Conf. Ser.: Earth Environ. Sci.
,
132
(
2018
), p.
012009
.10.1088/1755-1315/132/1/012009
11.
Anvari
,
A.
, and
Safarzadeh
,
L.
,
2012
, “
Assessment of the Total Effective Dose Equivalent for Accidental Release From the Tehran Research Reactor
,”
Ann. Nucl. Energy
,
50
, pp.
251
255
.10.1016/j.anucene.2012.07.002
12.
Sahin
,
S.
, and
Ali
,
M.
,
2016
, “
Emergency Planning Zones Estimation for Karachi-2 and Karachi-3 Nuclear Power Plants Using Gaussian Puff Model
,”
Sci. Technol. Nucl. Install.
,
2016
, p.
8549498
.10.1155/2016/8549498
13.
Arnold
,
D.
,
Maurer
,
C.
,
Wotawa
,
G.
,
Draxler
,
R.
,
Saito
,
K.
, and
Seibert
,
P.
,
2015
, “
Influence of the Meteorological Input on the Atmospheric Transport Modelling With FLEXPART of Radionuclides From the Fukushima Daiichi Nuclear Accident
,”
J. Environ. Radioact.
,
139
, pp.
212
225
.10.1016/j.jenvrad.2014.02.013
14.
An
,
H. Y.
,
Kang
,
Y.-H.
,
Song
,
S.-K.
,
Bang
,
J.-H.
, and
Kim
,
Y.-K.
,
2015
, “
Atmospheric Dispersion of Radioactive Material According to the Local Wind Patterns Around the Kori Nuclear Power Plant Using WRF/HYSPLIT Model
,”
J. Environ. Sci. Int.
,
24
(
1
), pp.
81
96
.10.5322/JESI.2015.24.1.81
15.
Brian
,
E. M.
,
Harold
,
L. B.
,
André
,
B.
, and
Steven
,
L. S.
,
2010
, “
Predictions of Dispersion and Deposition of Fallout From Nuclear Testing Using the NOAA-HYSPLIT Meteorological Model
,”
Health Phys.
,
99
(
2
), pp.
252
269
.https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1097%2FHP.0b013e3181b43697
16.
Wayland
,
R. A.
,
2008
, “
Clarification of Regulatory Status of CALPUFF for Near-Field Applications
,” U.S. Environmental Protection Agency, Research Triangle Park EPA, NC, accessed Mar. 24, 2020, https://www3.epa.gov/scram001/guidance/clarification/clarification%20of%20regulatory%20status%20of%20calpuff.pdf
17.
Sagendorf
,
J. F.
,
Goll
,
J. T.
, and
Sandusky
,
W. F.
,
1982
, “
XOQDOQ: Computer Program for Meteorological Evaluation of Routine Effluent Releases at Nuclear Power Stations
,” U.S. Nuclear Regulatory Commission, Washington, DC, Report No. NUREG-0324.
18.
Bander
,
T. J.
,
1982
, “
PAVAN: An Atmospheric Dispersion Program for Evaluating Design Basis Accidental Releases of Radioactive Materials From Nuclear Stations
,” U.S. Nuclear Regulatory Commission, Washington, DC, Report No. NUREG/CR-2858.
20.
BMD, 2020, “Bangladesh Meteorological Department,”
Meteorological Complex, Agargaon, Dhaka, Bangladesh.
21.
Sehgal
,
B. J.
,
2012
,
Nuclear Safety in Light Water Reactors: Severe Accident Phenomenology
, 1st ed.,
Elsevier
, Amsterdam, The Netherlands, p.
593
.
22.
Steven
,
G. H.
, and
Fernando
,
A.
,
2014
, “
HotSpot Health Physics Codes: User's Guide, Version 3.0
,” National Atmospheric Release Advisory Center, Lawrence Livermore National Laboratory, Livermore, CA, Standard No. LLNL-SM-636474.
23.
IAEA
,
2015
, “
The Fukushima Daiichi Accident, IAEA Technical Volume 4, Radiological Consequences
,” IAEA, Vienna, Austria, accessed Mar. 20, 2020, https://www-pub.iaea.org/MTCD/Publications/PDF/AdditionalVolumes/P1710/Pub1710-TV4-Web.pdf
24.
IAEA
,
2011
, “
Criteria for Use in Preparedness and Response for a Nuclear or Radiological Emergency, IAEA General Safety Guide-2 (GSG-2)
,” IAEA, Vienna, Austria, Standard No. 978–92–0–107410–2.
You do not currently have access to this content.