Abstract

Radiation shielding is an indispensable ingredient in the design of an integrated system to attenuate the effects of radiation during various operations such as space, aircraft, and nuclear plant. Discerning and exploiting the properties of composite materials compatible for radiation shielding in those applications are therefore primary obligation. In this study, we present here the results of control, ilmenite-, and garnet-based composites radiation shielding capabilities. The gamma radiation shielding competency of control, ilmenite-, and garnet-based composite materials has been examined by using linear attenuation coefficient, mass attenuation coefficient (MAC), tenth value layer (TVL), and half value layer (HVL). A comparison among those composite materials has been studied to find out the best one for radiation shielding material. Factors influencing the radiation shielding capabilities such as mechanical properties, thermal properties, density, surface morphology, and Fourier-transform infrared spectroscopy (FTIR) analysis have been studied in comparative investigations. In this work, we show that garnet-based composite material has viable radiation shielding performances as compared to the control and ilmenite-based composites. Garnet-based composite exhibits lower impact energy to withstand against gamma radiation as compared to the other tested shielding materials.

References

1.
Aygün
,
B.
,
2019
, “
Neutron and Gamma Radiation Shielding Properties of High-Temperature-Resistant Heavy Concretes Including Chromite and Wolframite
,”
J. Radiat. Res. Appl. Sci.
,
12
(
1
), pp.
352
358
.10.1080/16878507.2019.1672312
2.
Lamarsh
,
J. R.
, and
Baratta
,
A. J.
,
2001
,
Introduction to Nuclear Engineering
, Vol.
3
,
Prentice Hall
,
Upper Saddle River, NJ
, p.
783
.
3.
Aygün
,
B.
,
Şakar
,
E.
,
Korkut
,
T.
,
Sayyed
,
M. I.
,
Karabulut
,
A.
, and
Zaid
,
M. H. M.
,
2019
, “
Fabrication of Ni, Cr, W Reinforced New High Alloyed Stainless Steels for Radiation Shielding Applications
,”
Results Phys.
,
12
, pp.
1
6
.10.1016/j.rinp.2018.11.038
4.
Clyne
,
T. W.
, and
Hull
,
D.
,
2019
,
An Introduction to Composite Materials
,
Cambridge University Press
,
Cambridge, UK
, p.
360
.
5.
Choudhary
,
H. K.
,
Kumar
,
R.
,
Pawar
,
S. P.
,
Anupama
,
A. V.
,
Bose
,
S.
, and
Sahoo
,
B.
,
2018
, “
Effect of Coral‐Shaped Yttrium Iron Garnet Particles on the EMI Shielding Behaviour of Yttrium Iron Garnet‐Polyaniline‐Wax Composites
,”
Chem. Select
,
3
(
7
), pp.
2120
2130
.10.1002/slct.201702698
6.
Evcin
,
A.
,
Çelen
,
Y. Y.
,
Bezir
,
N. Ç.
, and
Ersoy
,
B.
,
2018
, “
November. Use of Ilmenite and Boron Waste as a Radiation Shielding Panel
,”
AIP Conf. Proc.
, 2042, p. 020001. 10.1063/1.5078873
7.
Zaman
,
M.
,
Schubert
,
M.
, and
Antao
,
S.
,
2012
, “
Elevated Radionuclide Concentrations in Heavy Mineral-Rich Beach Sands in the Cox's Bazar Region, Bangladesh and Related Possible Radiological Effects
,”
Isot. Environ. Health Stud.
,
48
(
4
), pp.
512
525
.10.1080/10256016.2012.696542
8.
Mitra
,
S.
,
Ahmed
,
S. S.
, and
Moon
,
H. S.
,
1992
, “
Mineralogy and Chemistry of the Opaques of Cox's Bazar (Bangladesh) Beach Sands and the Oxygen Fugacity of Their Provenance
,”
Sediment. Geol.
,
77
(
3–4
), pp.
235
247
.10.1016/0037-0738(92)90129-F
9.
Kretz
,
R.
,
1959
, “
Chemical Study of Garnet, Biotite, and Hornblende From Gneisses of Southwestern Quebec, With Emphasis on Distribution of Elements in Coexisting Minerals
,”
J. Geol.
,
67
(
4
), pp.
371
402
.10.1086/626594
10.
Parks
,
J. E.
,
2009
,
The Compton Effect-Compton Scattering and Gamma Ray Spectroscopy
,
Department of Physics, University of Tennessee
,
Knoxville, TN
, p.
37
.
11.
Erol
,
A.
,
Pocan
,
I.
,
Yanbay
,
E.
,
Ersoz
,
O. A.
, and
Lambrecht
,
F. Y.
,
2016
, “
Radiation Shielding of Polymer Composite Materials With Wolfram Carbide and Boron Carbide
,”
Radiat. Prot. Environ.
,
39
(
1
), pp.
3
6
.10.4103/0972-0464.185147
12.
Manjunatha
,
H. C.
, and
Seenappa
,
L.
,
2019
, “
Gamma and X-Ray Shielding Properties of Various Types of Steels
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
5
(
4
), p.
7
.10.1115/1.4043814
13.
Singh
,
V. P.
,
Medhat
,
M. E.
, and
Shirmardi
,
S. P.
,
2015
, “
Comparative Studies on Shielding Properties of Some Steel Alloys Using Geant4, MCNP, WinXCOM and Experimental Results
,”
Radiat. Phys. Chem.
,
106
, pp.
255
260
.10.1016/j.radphyschem.2014.07.002
14.
Pavlenko
,
V. I.
,
Cherkashina
,
N. I.
, and
Yastrebinsky
,
R. N.
,
2019
, “
Synthesis and Radiation Shielding Properties of Polyimide/Bi2O3 Composites
,”
Heliyon
,
5
(
5
), p.
e01703
.10.1016/j.heliyon.2019.e01703
15.
Shik
,
A.
,
Ruda
,
H.
, and
Sargent
,
E. H.
,
2000
, “
Photoelectric Phenomena in Polymer-Based Composites
,”
J. Appl. Phys.
,
88
(
6
), pp.
3448
3453
.10.1063/1.1289228
16.
Nambiar
,
S.
, and
Yeow
,
J. T.
,
2012
, “
Polymer-Composite Materials for Radiation Protection
,”
ACS Appl. Mater. Interfaces
,
4
(
11
), pp.
5717
5726
.10.1021/am300783d
17.
Thoraeus
,
R.
,
1959
, “
Chapter III—Standard Measurements of the Cobalt 60 Gamma Radiation
,”
Acta Radiol.
,
51
(
Suppl. 179
), pp.
63
78
.10.3109/00016925909173793
18.
Al Mahmood
,
A.
,
Mobin
,
A.
,
Morshed
,
R.
, and
Zaman
,
T.
,
2017
, “
Characterization of Glass Fibre Reinforced Polymer Composite Prepared by Hand Layup Method
,”
Am. J. Biosci. Bioeng.
,
5
(
1
), pp.
8
11
.10.11648/j.bio.20170501.12
19.
Chowdhury
,
M.
,
Shuvho
,
B.
,
Debnath
,
U.
, and
Nuruzzaman
,
D.
,
2019
, “
Prediction and Optimization of Erosion Rate of Carbon Fiber–Reinforced Ebonite Using Fuzzy Logic
,”
J. Test. Eval.
,
47
(
2
), pp. 1244–1258.10.1520/JTE20170589
20.
Ambika
,
M. R.
, and
Nagaiah
,
N.
,
2017
, “
Gamma Shielding Ability and Chemical Stability of Polyester-Based Polymer Composites
,”
Indian J. Adv. Chem. Sci. S2
,
23
, pp.
23
27
.10.22607/IJACS.2017.S02006
21.
Li
,
R.
,
Gu
,
Y.
,
Wang
,
Y.
,
Yang
,
Z.
,
Li
,
M.
, and
Zhang
,
Z.
,
2017
, “
Effect of Particle Size on Gamma Radiation Shielding Property of Gadolinium Oxide Dispersed Epoxy Resin Matrix Composite
,”
Mater. Res. Exp.
,
4
(
3
), p.
10
.10.1088/2053-1591/aa6651
22.
Sugihara
,
K.
,
Sakai
,
H.
,
Hattori
,
K.
,
Tanaka
,
G.
,
Hayashi
,
M.
,
Ito
,
T.
, and
Oda
,
N.
,
2018
, “
Application of Monte Carlo Simulation to Design of Sampler and Detector in Radiation Monitoring System
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
4
(
4
), p.
8
.10.1115/1.4039968
23.
Cho
,
K.
,
Wang
,
G.
,
Fang
,
J.
,
Rajan
,
G.
,
Stenzel
,
M. H.
,
Farrar
,
P.
, and
Prusty
,
B. G.
,
2019
, “
Selective Atomic-Level Etching on Short S-Glass Fibres to Control Interfacial Properties for Restorative Dental Composites
,”
Sci. Rep.
,
9
(
1
), p.
10
.10.1038/s41598-019-40524-7
24.
Sanjay
,
M. A.
, and
Yogesha
,
B.
,
2016
, “
Studies on Mechanical Properties of Jute/E-Glass Fiber Reinforced Epoxy Hybrid Composites
,”
J. Miner. Mater. Charact. Eng.
,
4
(
1
), pp.
15
25
.10.4236/jmmce.2016.41002
25.
Brenner
,
D. J.
, and
Hall
,
E. J.
,
2007
, “
Computed Tomography—An Increasing Source of Radiation Exposure
,”
New Engl. J. Med.
,
357
(
22
), pp.
2277
2284
.10.1056/NEJMra072149
26.
Bagci
,
M.
, and
Imrek
,
H.
,
2011
, “
Solid Particle Erosion Behaviour of Glass Fibre Reinforced Boric Acid Filled Epoxy Resin Composites
,”
Tribol. Int.
,
44
(
12
), pp.
1704
1710
.10.1016/j.triboint.2011.06.033
27.
Abdulla
,
R.
,
Fidha
,
M.
,
Rao
,
B. S.
,
Kudkuli
,
J.
,
Rekha
,
P. D.
, and
Sharma
,
S. D.
,
2015
, “
Attenuation of 60Co Gamma Rays by Barium Acrylic Resin Composite Shields
,”
Radiat. Prot. Environ.
,
38
(
4
), pp.
151
153
.10.4103/0972-0464.176157
28.
Herrera-Franco
,
P. J.
, and
Valadez-González
,
A.
,
2005
, “
A Study of the Mechanical Properties of Short Natural-Fiber Reinforced Composites
,”
Compos. Part B: Eng.
,
36
(
8
), pp.
597
608
.10.1016/j.compositesb.2005.04.001
29.
Hamidon
,
M. H.
,
Sultan
,
M. T. H.
, and
Ariffin
,
A. H.
,
2019
, “
Failure Analysis in Biocomposites
,”
Fibre-Reinforced Composites and Hybrid Composites
,
Woodhead Publishing
,
Cambridge, UK
, p.
274
.
30.
Pioro
,
I. L.
, and
Duffey
,
R. B.
,
2007
,
Heat Transfer and Hydraulic Resistance at Supercritical Pressures in Power Engineering Applications
,
ASME Press
,
New York
, p.
334
.
31.
Narici
,
L.
,
Casolino
,
M.
,
Di Fino
,
L.
,
Larosa
,
M.
,
Picozza
,
P.
,
Rizzo
,
A.
, and
Zaconte
,
V.
,
2017
, “
Performances of Kevlar and Polyethylene as Radiation Shielding on-Board the International Space Station in High Latitude Radiation Environment
,”
Sci. Rep.
,
7
(
1
), p.
11
.10.1038/s41598-017-01707-2
32.
Agar
,
O.
,
Tekin
,
H. O.
,
Sayyed
,
M. I.
,
Korkmaz
,
M. E.
,
Culfa
,
O.
, and
Ertugay
,
C.
,
2019
, “
Experimental Investigation of Photon Attenuation Behaviors for Concretes Including Natural Perlite Mineral
,”
Results Phys.
,
12
, pp.
237
243
.10.1016/j.rinp.2018.11.053
33.
Agar
,
O.
,
Sayyed
,
M. I.
,
Akman
,
F.
,
Tekin
,
H. O.
, and
Kaçal
,
M. R.
,
2019
, “
An Extensive Investigation on Gamma Ray Shielding Features of Pd/Ag-Based Alloys
,”
Nucl. Eng. Technol.
,
51
(
3
), pp.
853
859
.10.1016/j.net.2018.12.014
34.
Sayyed
,
M. I.
,
Akman
,
F.
,
Kaçal
,
M. R.
, and
Kumar
,
A.
,
2019
, “
Radiation Protective Qualities of Some Selected Lead and Bismuth Salts in the Wide Gamma Energy Region
,”
Nucl. Eng. Technol.
,
51
(
3
), pp.
860
866
.10.1016/j.net.2018.12.018
35.
Ruengsri
,
S.
,
2014
, “
Radiation Shielding Properties Comparison of Pb-Based Silicate, Borate, and Phosphate Glass Matrices
,”
Sci. Technol. Nucl. Install.
,
2014
, pp.
1
5
.10.1155/2014/218041
36.
Parlar
,
Z.
,
Abdlhamed
,
A.
, and
Akkurt
,
İ.
,
2019
, “
Gamma-Ray-Shielding Properties of Composite Materials Made of Recycled Sport Footwear
,”
Int. J. Environ. Sci. Technol.
,
16
(
9
), pp.
5113
5116
.10.1007/s13762-018-1876-7
37.
Karmaker
,
A. C.
,
Hoffmann
,
A.
, and
Hinrichsen
,
G.
,
1994
, “
Influence of Water Uptake on the Mechanical Properties of Jute Fiber‐Reinforced Polypropylene
,”
J. Appl. Polym. Sci.
,
54
(
12
), pp.
1803
1807
.10.1002/app.1994.070541203
38.
McAlister
,
D. R.
,
2012
,
Gamma Ray Attenuation Properties of Common Shielding Materials
,
University Lane Lisle
,
Lisle, IL
, p.
14
.
You do not currently have access to this content.