Abstract

Nordic boiling water reactor (BWR) design employs ex-vessel debris coolability in a deep pool of water as a severe accident management (SAM) strategy. Depending on melt release conditions from the vessel and core–melt coolant interactions, containment integrity can be threatened by: (i) formation of noncoolable debris bed or (ii) energetic steam explosion. Melt is released from the vessel affect ex-vessel phenomena and is recognized as the major source of uncertainty. The risk-oriented accident analysis methodology (ROAAM+) is used for quantification of the risk of containment failure in Nordic BWR where melt ejection mode surrogate model (MEM SM) provides initial conditions for the analysis of debris agglomeration and ex-vessel steam explosion which determine the respective loads on the containment. Melt ejection SM is based on the system analysis code methods for estimation of leakages and consequences of releases (computer code) (MELCOR). Modeling of vessel failure and melt release from the vessel in MELCOR is based on parametric models, allowing a user to select different assumptions that effectively control lower head (LH) behavior and melt release. The work addresses the effect of epistemic uncertain parameters and modeling assumptions in MEM SM on the containment loads due to ex-vessel steam explosion in Nordic BWR. Sensitivity and uncertainty analysis performed to identify the most influential parameters and uncertainty in the risk of containment failure due to ex-vessel steam explosion. The results of the analysis provide valuable insights regarding the effect of MELCOR models, modeling parameters, and sensitivity coefficients on melt release conditions and predictions of ex-vessel steam explosion loads on the containment structures.

References

1.
Kudinov
,
P.
,
Galushin
,
S.
,
Yakush
,
S.
,
Villanueva
,
W.
,
Phung
,
V. A.
,
Grishchenko
,
D.
, and
Dinh
,
N.
,
2014
, “
A Framework for Assessment of Severe Accident Management Effectiveness in Nordic BWR Plants
,”
Probabilistic Safety Assessment and Management (PSAM 12)
,
Honolulu, HI
, June 22–27, Paper No. 154. 
2.
Galushin
,
S.
,
2019
, “
Development of Risk Oriented Accident Analysis Methodology for Assessment of Effectiveness of Severe Accident Management Strategy in Nordic BWR
,”
Ph.D. thesis
,
Royal Institute of Technology (KTH)
,
Stockholm, Sweden
, p.
93
.https://www.diva-portal.org/smash/get/diva2:1283939/FULLTEXT01.pdf
3.
Theofanous
,
T. G.
,
1996
, “
On the Proper Formulation of Safety Goals and Assessment of Safety Margins for Rare and High-Consequence Hazards
,”
Reliab. Eng. Syst. Saf.
,
54
(
2–3
), pp.
243
257
.10.1016/S0951-8320(96)00079-8
4.
Theofanous
,
T. G.
, and
Dinh
,
T. N.
,
2008
, “
Integration of Multiphase Science and Technology With Risk Management in Nuclear Power Reactors: Application of the Risk-Oriented Accident Analysis Methodology to the Economic, Simplified Boiling Water Reactor Design
,”
Multiphase Sci. Technol.
,
20
(
2
), pp.
81
211
.10.1615/MultScienTechn.v20.i2.10
5.
Pilch
,
M. M.
,
Yan
,
H.
, and
Theofanous
,
T. G.
,
1996
, “
The Probability of Containment Failure by Direct Containment Heating in Zion
,”
Nucl. Eng. Des.
,
164
(
1–3
), pp.
1
36
.10.1016/0029-5493(96)01227-7
6.
Scobel
,
J.
,
Theofanous
,
T. G.
, and
Sorrell
,
S.
,
1998
, “
Application of the Risk Oriented Accident Analysis Methodology (ROAAM) to Severe Accident Management in the AP600 Advanced Light Water Reactor
,”
Reliab. Eng. Syst. Saf.
,
62
(
1–2
), pp.
51
58
.10.1016/S0951-8320(97)00170-1
7.
Siltanen
,
S.
,
Routamo
,
T.
,
Tuomisto
,
H.
, and
Lundström
,
P.
,
2007
, “
Severe Accident Management at the Loviisa NPP—Application of Integrated ROAAM and PSA Level 2
,”
Nuclear Energy Agency of the OECD (NEA)
, Paris, France, p.
13
.https://www.oecd-nea.org/nsd/reports/2007/nea6053/Session-IV-Applications-to-Uncertainty-Assessment-in-Level-2-PSA/Paper-19_Siltanen-et-al.pdf
8.
Grishchenko
,
D.
,
Basso
,
S.
, and
Kudinov
,
P.
,
2016
, “
Development of a Surrogate Model for Analysis of Ex-Vessel Steam Explosion in Nordic Type BWRs
,”
Nucl. Eng. Des.
,
310
, pp.
311
327
.10.1016/j.nucengdes.2016.10.014
9.
Galushin
,
S.
,
Grishchenko
,
D.
, and
Kudinov
,
P.
,
2019
, “
Surrogate Model Development for Prediction of Vessel Failure Mode and Melt Release Conditions in Nordic BWR Based on MELCOR Code
,”
ICONE-27, 27th International Conference on Nuclear Engineering
,
Tsukuba, Ibaraki, Japan
, May 19–24, Paper No. 2172.
10.
Humphries
,
L. L.
,
Cole
,
R. K.
,
Louie
,
D. L.
,
Figueroa
,
V. G.
, and
Young
,
M. F.
,
2015
, “
MELCOR Computer Code Manuals
,”
Primer and User's Guide Version 2.1.6840
, Vol.
1
,
Washington, DC
, Standard No. SAND2015-6691 R. 
11.
Humphries
,
L. L.
,
Cole
,
R. K.
,
Louie
,
D. L.
,
Figueroa
,
V. G.
, and
Young
,
M. F.
,
2015
, “
MELCOR Computer Code Manuals
,”
Reference Manuals Version 2.1.6840
, Vol.
2
,
Washington, DC
, Standard No. SAND2015-6692 R.
12.
Galushin
,
S.
, and
Kudinov
,
P.
,
2020
, “
Sensitivity and Uncertainty Analysis of the Vessel Lower Head Failure Mode and Melt Release Conditions in Nordic BWR Using MELCOR Code
,”
Ann. Nucl. Energy
,
135
, p.
106976
.10.1016/j.anucene.2019.106976
13.
Galushin
,
S.
, and
Kudinov
,
P.
,
2019
, “
Uncertainty Analysis of Vessel Failure Mode and Melt Release in Station Blackout Scenario in Nordic BWR Using MELCOR Code
,”
18th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-18)
,
Portland, OR
, Aug. 18–22, Paper No. 27744.https://www.researchgate.net/publication/336231284_Uncertainty_Analysis_of_Vessel_Failure_Mode_and_Melt_Release_in_Station_Blackout_Scenario_in_Nordic_BWR_Using_MELCOR_Code
14.
Torregrosa
,
C.
,
2013
, “
Coupled 3D Thermo-Mechanical Analysis of Nordic BWR Lower Head Failure in Case of Core Melt Severe Accident
,” Master thesis,
Royal Institute of Technology (KTH)
,
Sweden
, p.
110
.
15.
Rempe
,
J. L.
,
Chavez
,
S. A.
, and
Thinnes
,
G. L.
,
1993
, “
Light Water Reactor Lower Head Failure Analysis
,”
Washington, DC
, Report No. NUREG/CR-5642.
16.
Grishchenko
,
D.
,
Galushin
,
S.
, and
Kudinov
,
P.
,
2019
, “
Failure Domain Analysis and Uncertainty Quantification Using Surrogate Models for Steam Explosion in a Nordic Type BWR
,”
Nucl. Eng. Des.
,
343
, pp.
63
75
.10.1016/j.nucengdes.2018.12.013
17.
Grishchenko
,
D.
,
Galushin
,
S.
,
Basso
,
S.
, and
Kudinov
,
P.
,
2017
, “
Failure Domain Analysis and Uncertainty Quantification Using Surrogate Models for Steam Explosion in a Nordic Type BWR
,”
17th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-17)
,
Xi'an, China
, Sept. 3–8, Paper No. 21671.
18.
DeGroot
,
M. H.
, and
Schervish
,
M. J.
,
2012
,
Probability and Statistics
,
Pearson
,
oston, MA
, p.
912
.
19.
Mitchell
,
T.
,
1997
,
Machine Learning
,
McGraw-Hill
,
New York
, p.
432
.
20.
Corradini
,
M. L.
,
2002
,
Users' Manual for Texas-V: One Dimensional Transient Fluid Model for Fuel-Coolant Interaction Analysis
,
University of Wisconsin-Madison
,
Madison, WI
.
21.
Ang
,
M. L.
, and
Buttery
,
N. E.
,
1997
, “
An Approach to the Application of Subjective Probabilities in Level 2 PSAs
,”
Reliab. Eng. Syst. Saf.
,
58
(
2
), pp.
145
156
.10.1016/S0951-8320(96)00145-7
22.
Saltelli
,
A.
,
Ratto
,
M.
,
Tarantola
,
S.
, and
Campolongo
,
F.
,
2002
,
Sensitivity Analysis in Practice: A Guide to Scientific Models
,
Wiley
,
Chichester, UK
, p.
232
.
You do not currently have access to this content.