Abstract

Subcooled flow boiling is widely used as a mode of heat transfer in many industries, especially in nuclear reactors. Despite its advantages, the heat transfer is hampered beyond a certain flux due to a phenomenon known as departure from nucleate boiling (DNB). It is important to determine the void fraction profiles, especially the near-wall void fractions, to evaluate the limiting heat flux conditions. The two-fluid Eulerian model, coupled with the heat flux partitioning model, is widely used to predict subcooled flow boiling characteristics. Over the years, many researchers have not considered lift and wall lubrication forces in their modeling of subcooled flow boiling. Few researchers have considered the Tomiyama model for lift force; however, their results were not encouraging. Moreover, there is no systematic study in evaluating the impact of lift and wall lubrication forces on subcooled flow boiling. In this paper, various lift and wall lubrication models are compared to understand the implications of these forces on void distribution. The advantages and limitations of the models are discussed in detail.

References

1.
Krepper
,
E.
, and
Rzehak
,
R.
,
2011
, “
CFD for Subcooled Flow Boiling: Simulation of DEBORA Experiments
,”
Nucl. Eng. Des.
,
241
(
9
), pp.
3851
3866
.10.1016/j.nucengdes.2011.07.003
2.
Rzehak
,
R.
, and
Krepper
,
E.
,
2013
, “
CFD for Subcooled Flow Boiling: Parametric Variations
,”
Sci. Technol. Nucl. Install.
,
2013
, pp.
1
22
.10.1155/2013/687494
3.
Colombo
,
M.
, and
Fairweather
,
M.
,
2016
, “
Accuracy of Eulerian–Eulerian, Two-Fluid CFD Boiling Models of Subcooled Boiling Flows
,”
Int. J. Heat Mass Transfer
,
103
, pp.
28
44
.10.1016/j.ijheatmasstransfer.2016.06.098
4.
Murallidharan
,
J. S.
,
Prasad
,
B. V. S. S. S.
,
Patnaik
,
B. S. V.
,
Hewitt
,
G. F.
, and
Badalassi
,
V.
,
2016
, “
CFD Investigation and Assessment of Wall Heat Flux Partitioning Model for the Prediction of High Pressure Subcooled Flow Boiling
,”
Int. J. Heat Mass Transfer
,
103
, pp.
211
230
.10.1016/j.ijheatmasstransfer.2016.06.050
5.
Colombo
,
M.
, and
Fairweather
,
M.
,
2015
, “
Prediction of Bubble Departure in Forced Convection Boiling: A Mechanistic Model
,”
Int. J. Heat Mass Transfer
,
85
, pp.
135
146
.10.1016/j.ijheatmasstransfer.2015.01.103
6.
Yeoh, G. H., and Tu, J. Y., 2006, “
Two-Fluid and Population Balance Models for Subcooled Boiling Flow
,”
Appl. Math. Model.
,
30
(
11
), pp.
1370
1391
.10.1016/j.apm.2006.03.010
7.
Krepper
,
E.
,
Rzehak
,
R.
,
Lifante
,
C.
, and
Frank
,
T.
,
2013
, “
CFD for Subcooled Flow Boiling: Coupling Wall Boiling and Population Balance Models
,”
Nucl. Eng. Des.
,
255
, pp.
330
346
.10.1016/j.nucengdes.2012.11.010
8.
Li
,
H.
,
Vasquez
,
S. A.
,
Punekar
,
H.
, and
Muralikrishnan
,
R.
,
2011
, “
Prediction of Boiling and Critical Heat Flux Using an Eulerian Multiphase Boiling Model
,”
ASME Paper No. IMECE2011-65539
.10.1115/IMECE2011-65539
9.
Yun
,
B. J.
,
Splawski
,
A.
,
Lo
,
S.
, and
Song
,
C. H.
,
2012
, “
Prediction of a Subcooled Boiling Flow With Advanced Two-Phase Flow Models
,”
Nucl. Eng. Des.
,
253
, pp.
351
359
.10.1016/j.nucengdes.2011.08.067
10.
Drew
,
D. A.
,
1992
, “
Analytical Modeling of Multiphase Flows
,”
Boiling Heat Transfer: Modern Developments and Advances
,
R.T.
Lahey
, ed.,
Elsevier
,
Amsterdam, The Netherlands
, pp.
31
84
.
11.
Kurul
,
N.
, and
Podowski
,
M. Z.
,
1990
, “
Multidimensional Effects in Forced Convection Subcooled Boiling
,”
Proceedings of the Ninth International Heat Transfer Conference
, Vol.
2
,
Jerusalem, Israel
, Aug. 19–24, pp.
21
26
.
12.
Tolubinsky
,
V. I.
, and
Kostanchuk
,
D. M.
,
1970
, “
Vapour Bubbles Growth Rate and Heat Transfer Intensity at Subcooled Water Boiling
,”
Proceedings of Fourth International Heat Transfer Conference
, Vol.
5
,
Paris, France
, Aug. 31–Sept. 5, Paper No. B-2.8, pp.
1
11
.
13.
Cole
,
R.
,
1960
, “
A Photographic Study of Pool Boiling in the Region of the Critical Heat Flux
,”
AIChE J.
,
6
(
4
), pp.
533
538
.10.1002/aic.690060405
14.
Lemmert
,
M.
, and
Chawla
,
J.
,
1977
, “
Influence of Flow Velocity on Surface Boiling Heat Transfer Coefficient
,”
Heat Transfer and Boiling
,
E.
Hahne
and
U.
Grigull
, eds.,
Academic Press and Hemisphere
,
New York
, pp.
237
247
.
15.
Ishii
,
M.
, and
Zuber
,
N.
,
1979
, “
Drag Coefficient and Relative Velocity in Bubbly, Droplet or Particulate Flows
,”
AIChE J.
,
25
(
5
), pp.
843
855
.10.1002/aic.690250513
16.
Lopez de Bertodano
,
M.
,
Lahey
,
R. T.
, and
Jones
,
O. C.
,
1994
, “
Turbulent Bubbly Two-Phase Flow Data in a Triangular Duct
,”
Nucl. Eng. Des.
,
146
(
1–3
), pp.
43
52
.10.1016/0029-5493(94)90319-0
17.
Burns
,
A. D.
,
Frank
,
T.
,
Hamill
,
I.
, and
Shi
,
J.-M. M.
,
2004
, “
The Favre Averaged Drag Model for Turbulent Dispersion in Eulerian Multi-Phase Flows
,”
Proceedings of the Fifth International Conference on Multiphase Flow (ICMF-2004)
,
Yokohama, Japan
, May 30–June 4, Paper No. 392.https://www.researchgate.net/publication/261761053_The_Favre_Averaged_Drag_Model_for_Turbulent_Dispersion_in_Eulerian_Multi-Phase_Flows
18.
Drew
,
D. A.
, and
Lahey
,
R. T.
,
1987
, “
The Virtual Mass and Lift Force on a Sphere in Rotating and Straining Inviscid Flow
,”
Int. J. Multiphase Flow
,
13
(
1
), pp.
113
121
.10.1016/0301-9322(87)90011-5
19.
Moraga
,
F. J.
,
Bonetto
,
F. J.
, and
Lahey
,
R. T.
,
1999
, “
Lateral Forces on Spheres in Turbulent Uniform Shear Flow
,”
Int. J. Multiphase Flow
,
25
(
6–7
), pp.
1321
1372
.10.1016/S0301-9322(99)00045-2
20.
Klausner
,
J. F.
,
Mei
,
R.
,
Bernhard
,
D. M.
, and
Zeng
,
L. Z.
,
1993
, “
Vapor Bubble Departure in Forced Convection Boiling
,”
Int. J. Heat Mass Transfer
,
36
(
3
), pp.
651
662
.10.1016/0017-9310(93)80041-R
21.
Saffman
,
P. G.
,
1965
, “
The Lift on a Small Sphere in a Slow Shear Flow
,”
J. Fluid Mech.
,
22
(
2
), pp.
385
400
.10.1017/S0022112065000824
22.
Legendre
,
D.
, and
Magnaudet
,
J.
,
1998
, “
The Lift Force on a Spherical Bubble in a Viscous Linear Shear Flow
,”
J. Fluid Mech.
,
368
, pp.
81
126
.10.1017/S0022112098001621
23.
Tomiyama
,
A.
,
Tamai
,
H.
,
Zun
,
I.
, and
Hosokawa
,
S.
,
2002
, “
Transverse Migration of Single Bubbles in Simple Shear Flows
,”
Chem. Eng. Sci.
,
57
(
11
), pp.
1849
1858
.10.1016/S0009-2509(02)00085-4
24.
Antal
,
S. P.
,
Lahey
,
R. T.
, and
Flaherty
,
J. E.
,
1991
, “
Analysis of Phase Distribution in Fully Developed Laminar Bubbly Two-Phase Flow
,”
Int. J. Multiphase Flow
,
17
(
5
), pp.
635
652
.
25.
Frank
,
T.
,
Shi
,
J. M.
, and
Burns
,
A. D.
,
2004
, “
Validation of Eulerian Multiphase Flow Models for Nuclear Safety Application
,”
Proceedings of the Third International Symposium on Two-Phase Flow Modelling and Experimentation
,
Pisa, Italy
, Sept. 22–24, p.
9
.
26.
Tomiyama
,
A.
,
1998
, “
Struggle With Computational Bubble Dynamics
,”
Multiphase Sci. Technol.
,
10
(
4
), pp.
369
405
.
27.
Hosokawa
,
S.
,
Tomiyama
,
A.
,
Misaki
,
S.
, and
Hamada
,
T.
,
2002
, “
Lateral Migration of Single Bubbles Due to the Presence of Wall
,”
ASME Paper No. FEDSM2002-31148
.10.1115/FEDSM2002-31148
28.
Takemura
,
F.
,
Takagi
,
S.
,
Magnaudet
,
J.
, and
Matsumoto
,
Y.
,
2002
, “
Drag and Lift Forces on a Bubble Rising Near a Vertical Wall in a Viscous Liquid
,”
J. Fluid Mech.
,
461
, pp.
277
300
.10.1017/S0022112002008388
29.
Hassan
,
Y. A.
,
Estrada-Perez
,
C. E.
, and
Yoo
,
J. S.
,
2014
, “
Measurement of Subcooled Flow Boiling Using Particle Tracking Velocimetry and Infrared Thermographic Technique
,”
Nucl. Eng. Des.
,
268
, pp.
185
190
.10.1016/j.nucengdes.2013.04.044
30.
Vaidheeswaran
,
A.
,
Prabhudharwadkar
,
D.
,
Guilbert
,
P.
,
Buchanan
,
J. R.
, and
de Bertodano
,
M. L.
,
2016
, “
New Two-Fluid Model Near-Wall Averaging and Consistent Matching for Turbulent Bubbly Flows
,”
ASME J. Fluids Eng.
,
139
(
1
), p.
011302
.10.1115/1.4034327
31.
Lubchenko
,
N.
,
Magolan
,
B.
,
Sugrue
,
R.
, and
Baglietto
,
E.
,
2018
, “
A More Fundamental Wall Lubrication Force From Turbulent Dispersion Regularization for Multiphase CFD Applications
,”
Int. J. Multiphase Flow
,
98
, pp.
36
44
.10.1016/j.ijmultiphaseflow.2017.09.003
32.
Zhang
,
R.
,
Cong
,
T.
,
Tian
,
W.
,
Qiu
,
S.
, and
Su
,
G.
,
2015
, “
Effects of Turbulence Models on Forced Convection Subcooled Boiling in Vertical Pipe
,”
Ann. Nucl. Energy
,
80
, pp.
293
302
.10.1016/j.anucene.2015.01.039
33.
Rzehak
,
R.
, and
Krepper
,
E.
,
2013
, “
CFD Modeling of Bubble-Induced Turbulence
,”
Int. J. Multiphase Flow
,
55
, pp.
138
155
.10.1016/j.ijmultiphaseflow.2013.04.007
34.
Mali
,
C. R.
,
Vinod
,
V.
, and
Patwardhan
,
A. W.
,
2017
, “
Comparison of Phase Interaction Models for High Pressure Subcooled Boiling Flow in Long Vertical Tubes
,”
Nucl. Eng. Des.
,
324
, pp.
337
359
.10.1016/j.nucengdes.2017.09.010
35.
Sato
,
Y.
,
Sadatomi
,
M.
, and
Sekoguchi
,
K.
,
1981
, “
Momentum and Heat Transfer in Two-Phase Bubble Flow—I: Theory
,”
Int. J. Multiphase Flow
,
7
(
2
), pp.
167
177
.10.1016/0301-9322(81)90003-3
36.
Garnier
,
J.
,
Manon
,
E.
, and
Cubizolles
,
G.
,
2001
, “
Local Measurements on Flow Boiling of Refrigerant 12 in a Vertical Tube
,”
Multiphase Sci. Technol.
,
13
(
1–2
), p.
111
.10.1615/MultScienTechn.v13.i1-2.10
37.
Roy
,
R. P.
,
Kang
,
S.
,
Zarate
,
J. A.
, and
Laporta
,
A.
,
2002
, “
Turbulent Subcooled Boiling Flow—Experiments and Simulations
,”
ASME J. Heat Transfer
,
124
(
1
), pp.
73
93
.10.1115/1.1418698
38.
Bartolomei
,
G. G.
, and
Chanturiya
,
V. M.
,
1967
, “
Experimental Study of True Void Fraction When Boiling Subcooled Water in Vertical Tubes
,”
Therm. Eng.
,
14
(
2
), pp.
123
128
.
39.
Kumar
,
M.
,
Moharana
,
A.
,
Nayak
,
A. K.
, and
Joshi
,
J. B.
,
2018
, “
CFD Simulation of Boiling Flows Inside Fuel Rod Bundle of a Natural Circulation BWR During SBO
,”
Nucl. Eng. Des.
,
338
, pp.
300
329
.10.1016/j.nucengdes.2018.08.011
40.
Anglart
,
H.
,
Nylund
,
O.
,
Kurul
,
N.
, and
Podowski
,
M. Z.
,
1997
, “
CFD Prediction of Flow and Phase Distribution in Fuel Assemblies With Spacers
,”
Nucl. Eng. Des.
,
177
(
1–3
), pp.
215
228
.
41.
Ranz
,
W. E.
, and
Marshall
,
W. R.
,
1952
, “
Evaporation From Drops 1
,”
Chem. Eng. Prog.
,
48
(
3
), pp.
141
146
.
You do not currently have access to this content.