Abstract

Heat transfer coefficient (HTC) relations developed using steady-state experimental data are used for capturing the complete heat transport characteristic in a severe nuclear accident. It is important to verify the applicability of these correlation(s) at an early stage of the accident where heat transfer is transient in nature. In this paper, an experimental study is executed for this purpose. High-pressure steam (at 0.26 MPa (2.6 bar) and 0.41 MPa (4.1 bar) absolute pressure) is leaked into the closed containment initially filled with atmospheric air, and filmwise condensation is studied on an isothermally maintained vertical stainless steel test plate. During the experiment, temperature variation across the test plate at specified locations and inside the containment are recorded using the microthermocouples. The steam–air mixture composition is also examined using an online mass-spectrometry system. An inverse heat conduction (IHC) technique, validated using air-jet impingement heat transfer data, is used to estimate the time-varying condensation heat flux. It is found that the existing correlations based on the steady-state experimental data predict the transient condensation flux quite well, except in very early transient situation with a time scale of ∼20 s.

References

1.
Birol
,
F.
,
2008
,
World Energy Outlook
, Vol.
23
,
IEA
,
Paris, France
, p.
329
.
2.
World Nuclear Association
,
2018
, “
Nuclear Power in the World Today
,” World Nuclear Association, accessed Oct.10, 2019, http://www.world-nuclear.org/information-library/current-and-future-generation/nuclear-power-in-the-world-today.aspx
3.
Pioro
,
I.
,
Duffey
,
R.
,
Kirillov
,
P.
,
Pioro
,
R.
,
Zvorykin
,
A.
, and
Machrafi
,
R.
,
2019
, “
Current Status and Future Developments in Nuclear-Power Industry of the World
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
5
(
2
), p.
27
.10.1115/1.4042194
4.
Baba
,
M.
,
2013
, “
Fukushima Accident: What Happened?
,”
Radiat. Meas.
,
55
, pp.
17
21
.10.1016/j.radmeas.2013.01.013
5.
OECD/NEA
,
2013
,
The Fukushima Daiichi Nuclear Power Plant Accident: OECD/NEA Nuclear Safety Response and Lessons Learnt
, Vol.
7161
,
NEA
,
CEDEX Paris, France
, p.
69
.
6.
Povinec
,
P.
,
Hirose
,
K.
, and
Aoyama
,
M.
,
2013
,
Fukushima Accident: Radioactivity Impact on the Environment
,
Elsevier
,
Waltham, MA
, p.
400
.
7.
Pioro
,
I.
, and
Duffey
,
R.
,
2015
, “
Nuclear Power as a Basis for Future Electricity Generation
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
1
(
1
), p.
19
.10.1115/1.4029420
8.
Zhang
,
Y.
,
Niu
,
S.
,
Zhang
,
L.
,
Qiu
,
S.
,
Su
,
G.
, and
Tian
,
W.
,
2015
, “
A Review on Analysis of LWR Severe Accident
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
1
(
4
), p.
20
.10.1115/1.4030364
9.
Punetha
,
M.
,
Yadav
,
M.
,
Khandekar
,
S.
,
Sharma
,
P. K.
, and
Ganju
,
S.
,
2020
, “
Intrinsic Transport and Combustion Issues of Steam-Air-Hydrogen Mixtures in Nuclear Containments
,”
Int. J. Hydrogen Energy
,
45
(
4
), pp.
3340
3371
.10.1016/j.ijhydene.2019.11.179
10.
Carbajo
,
J. J.
,
1981
, “
Heat Transfer Coefficients Under LOCA Conditions in Containment Buildings
,”
Nucl. Eng. Des.
,
65
(
3
), pp.
369
386
.10.1016/0029-5493(81)90100-X
11.
Yadav
,
M. K.
,
Khandekar
,
S.
, and
Sharma
,
P. K.
,
2016
, “
An Integrated Approach to Steam Condensation Studies Inside Reactor Containments: A Review
,”
Nucl. Eng. Des.
,
300
, pp.
181
209
.10.1016/j.nucengdes.2016.01.004
12.
Punetha
,
M.
,
Choudhary
,
A.
, and
Khandekar
,
S.
,
2018
, “
Stratification and Mixing Dynamics of Helium in an Air Filled Confined Enclosure
,”
Int. J. Hydrogen Energy
,
43
(
42
), pp.
19792
19809
.10.1016/j.ijhydene.2018.08.168
13.
Almenas
,
K.
,
1982
, “
Heat Transfer From Saturated and Superheated Atmospheres for Containment Analysis
,”
Nucl. Eng. Des.
,
71
(
1
), pp.
1
14
.10.1016/0029-5493(82)90164-9
14.
Sun
,
D.
,
Xi
,
Z.
,
Li
,
Y.
,
Zan
,
Y.
,
Xiong
,
W.
,
Li
,
P.
, and
Zhuo
,
W.
,
2018
, “
Experimental Investigation on Natural Circulation Characteristics of Emergency Passive Residual Heat Removal System in HPR1000
,”
Prog. Nucl. Energy
,
103
, pp.
1
7
.10.1016/j.pnucene.2017.11.001
15.
Punetha
,
M.
, and
Khandekar
,
S.
,
2017
, “
A CFD Based Modelling Approach for Predicting Steam Condensation in the Presence of Non-Condensable Gases
,”
Nucl. Eng. Des.
,
324
, pp.
280
296
.10.1016/j.nucengdes.2017.09.007
16.
Abdallah
,
I. A. S.
,
2017
, “
Experimental Study of Natural Convection Heat Transfer and Gaseous Dynamics from Dual-Channel Circulation Loop
,”
Ph.D. thesis
, Missouri University of Science and Technology, Rolla, MO, p.
167
.https://scholarsmine.mst.edu/doctoral_dissertations/2614/
17.
Alshehri
,
S. M.
,
Said
,
I. A.
,
Al-Dahhan
,
M. H.
, and
Usman
,
S.
,
2018
, “
Plenum-to-Plenum Natural Convection Heat Transfer Within a Scaled-Down Prismatic Modular Reactor Facility
,”
Therm. Sci. Eng. Prog.
,
7
, pp.
288
301
.10.1016/j.tsep.2018.06.011
18.
Said
,
I. A.
,
Taha
,
M. M.
,
Usman
,
S.
, and
Al-Dahhan
,
M. H.
,
2018
, “
Effect of Helium Pressure on Natural Convection Heat Transfer in a Prismatic Dual-Channel Circulation Loop
,”
Int. J. Therm. Sci.
,
124
, pp.
162
173
.10.1016/j.ijthermalsci.2017.10.004
19.
Malet
,
J.
,
Porcheron
,
E.
, and
Vendel
,
J.
,
2010
, “
OECD International Standard Problem ISP-47 on Containment Thermal-Hydraulics—Conclusions of the TOSQAN Part
,”
Nucl. Eng. Des.
,
240
(
10
), pp.
3209
3220
.10.1016/j.nucengdes.2010.05.061
20.
Malet
,
J.
, and
Laissac
,
R.
,
2015
, “
CFD Calculations of Stratification Build-Up Tests of Light Gas in a Closed Vessel Under Controlled Boundary Conditions
,”
Comput. Fluids
,
107
, pp.
224
241
.10.1016/j.compfluid.2014.11.004
21.
Kulkarni
,
S.
,
Punetha
,
M.
,
Choudhary
,
A.
, and
Khandekar
,
S.
,
2018
, “
Effect of Stratification and Natural Circulation on Steam Condensation in Presence of Non-Condensable Gases
,”
Fifth International Conference on Computational Methods for Thermal Problems
(THERMACOMP2018),
Indian Institute of Science
,
Bangalore, India
, p.
4
.
22.
IAEA
,
2017
,
Nuclear Power Reactors in the World
(Reference Data Series No. 2),
IAEA
,
Vienna, Austria
, p.
79
.
23.
Stephan
,
P.
,
Martin
,
H.
,
Kabelac
,
S.
,
Mewes
,
H. C. D.
,
Kind
,
M.
, and
Schaber
,
K.
,
2010
,
VDI Heat Atlas, VDI-Buch
,
Springer-Verlag Berlin Heidelberg
,
Heidelberg, Berlin, Germany
, p.
1584
.
24.
Singh
,
S. K.
,
Yadav
,
M. K.
, and
Khandekar
,
S.
,
2017
, “
Measurement Issues Associated With Surface Mounting of Thermopile Heat Flux Sensors
,”
Appl. Therm. Eng.
,
114
, pp.
1105
1113
.10.1016/j.applthermaleng.2016.12.076
25.
Auban
,
O.
,
Malet
,
J.
,
Brun
,
P.
,
Brinster
,
J.
,
Quillico
,
J. J.
, and
Studer
,
E.
,
2003
, “
Implementation of Gas Concentration Measurement Systems Using Mass Spectrometry in Containment Thermal-Hydraulics Test Facilities: Different Approaches for Calibration and Measurement with Steam/Air/Helium Mixtures
,”
Tenth International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-10)
,
Seoul, Korea
, p.
30
.
26.
Yadav
,
M. K.
,
2018
, “
Steam Condensation Studies Towards Understanding Post-Severe Nuclear Accident Scenarios
,” Ph.D. thesis,
Indian Institute of Technology
,
Kanpur, India
, p.
236
.
27.
Collier
,
J. G.
, and
Thome
,
J. R.
,
1994
, “
Convective Boiling and Condensation
,”
Oxford Engineering Science
,
Oxford University Press/Clarendon Press
,
Oxford, UK
, p.
640
.
28.
Moharana
,
M. K.
,
Agarwal
,
G.
, and
Khandekar
,
S.
,
2011
, “
Axial Conduction in Single-Phase Simultaneously Developing Flow in a Rectangular Mini-Channel Array
,”
Int. J. Therm. Sci.
,
50
(
6
), pp.
1001
1012
.10.1016/j.ijthermalsci.2011.01.017
29.
Yadav
,
M. K.
,
Singh
,
S. K.
,
Parwez
,
A.
, and
Khandekar
,
S.
,
2018
, “
Inverse Models for Transient Wall Heat Flux Estimation Based on Single and Multi-Point Temperature Measurements
,”
Int. J. Therm. Sci.
,
124
, pp.
307
317
.10.1016/j.ijthermalsci.2017.10.027
30.
Ozisik
,
M. N.
, and
Orlande
,
H. R. B.
,
2000
,
Inverse Heat Transfer: Fundamentals and Applications
,
Heat Transfer, Taylor and Francis
,
New York
, p.
352
.
31.
de la Rosa
,
J. C.
,
Escrivá
,
A.
,
Herranz
,
L. E.
,
Cicero
,
T.
, and
Muñoz-Cobo
,
J. L.
,
2009
, “
Review on Condensation on the Containment Structures
,”
Prog. Nucl. Energy
,
51
(
1
), pp.
32
66
.10.1016/j.pnucene.2008.01.003
32.
Kataoka
,
Y.
,
Fujii
,
T.
,
Murase
,
M.
, and
Tominaga
,
K.
,
1994
, “
Experimental Study on Heat Removal Characteristics for Water Wall Type Passive Containment Cooling System
,”
J. Nucl. Sci. Technol.
,
31
(
10
), pp.
1043
1052
.10.1080/18811248.1994.9735257
You do not currently have access to this content.