Abstract

The technique of composite region coupling by a neutron source at a common boundary of different regions that has been introduced in 2019 has allowed for an additive separation of variables neutron-density 3D wave analytical solution to the posing four-regional boundary value problem (BVP) of neutron cancer therapy (NCT). The three employable mutually orthogonal neutron beams, which may have different pulse shapes, have distinct modulation frequencies ω,ϖ,andŵ and distinct relative time delays εandε̂. By employing this solution, we demonstrate in this paper how the therapeutic utility index and the ballistic index for this kind of dynamical NCT form a nonlinear optimization problem. Both of these indices are demonstrated to be remarkably periodically discontinuous in ε or ε̂, even in the neighborhood of the respective ε or ε̂. As an extension of a result obtained also in 2019, for a certain lower-dimensional setup, a Pareto optimal control vector ω=(ω,ϖ,ε,ŵ,ε̂) is identified for this 3D problem. The existence of this vector paves the way toward what we call a “resonated and synchrophased three beams neutron cancer therapy (RASP-3BNCT) installation.”

References

References
1.
Haidar
,
N. H. S.
,
2019
, “
On the Why of Dynamical, and Not Stationary, Neutron Beam Cancer Therapy
,”
Nucl. Phys. At. Energy
(accepted).
2.
Haidar
,
N. H. S.
,
2019
, “
Optimization of Two Opposing Neutron Beams Parameters in Dynamical (B/Gd) Neutron Cancer Therapy
,”
Nucl. Energy Technol.
,
5
(
1
), pp.
1
7
.10.3897/nucet.5.32239
3.
Smirnov
,
V.
, and
Vorozhtsov
,
S.
,
2016
, “
Modern Compact Accelerators of Cyclotron Type for Medical Applications
,”
Phys. Part. Nuclei
,
47
(
5
), pp.
863
883
.10.1134/S1063779616050051
4.
Yoshida
,
Y.
,
Nakayama
,
H.
,
Nakai
,
K.
, and
Yamazaki
,
T.
,
1976
, “
Beam-Pulsing System for the IMS Cyclotron
,”
Nucl. Instrum. Methods
138
(
4
), pp.
579
588
.10.1016/0029-554X(76)90003-3
5.
Alvarez-Estrada
,
R. F.
, and
Calvo
,
M. L.
,
2004
, “
Neutron Fibers and Possible Applications to NCT
,”
Appl. Radiat. Isot.
,
61
(
5
), pp.
841
844
.10.1016/j.apradiso.2004.05.039
6.
Alvarez-Estrada
,
R. F.
, and
Calvo
,
M. L.
,
1984
, “
Neutron Fibers: A Possible Application to Neutron Optics
,”
J. Phys. D: Appl. Phys.
,
17
(
3
), pp.
475
502
.10.1088/0022-3727/17/3/007
7.
Haidar
,
N. H. S.
,
1997
, “
On a Boundary Value Problem Posed by Cancer Therapy With Neutron Beams
,”
J. Aust. Math. Soc., Ser. B
,
39
(
1
), pp.
46
60
.10.1017/S0334270000009206
8.
Haidar
,
N. H. S.
,
2002
, “
Composite Surface Integral Transforms in Neutron Therapy of Cancer
,”
Int. J. Theor. Phys.
,
41
(
1
), pp.
109
129
.10.1023/A:1013277701565
9.
Haidar
,
N. H.
,
2019
, “
An Additive Separation of Variables 3D Solution to a Dynamical BVP for Neutron Cancer Therapy
,”
Int. J. Dyn. Syst. Differ. Equations
, 9(
2
), pp.
140
163
.10.1504/IJDSDE.2019.10022220
10.
Haidar
,
N. H. S.
,
2018
, “
On Dynamical (B/Gd) Neutron Cancer Therapy: An Accelerator-Based Single Neutron Beam
,”
Pacific J. Appl. Math.
,
9
(
1
), pp.
9
26
.
11.
Mazaher
,
M. G.
,
Salehi
,
A. A.
, and
Vosoughi
,
N.
,
2019
, “
A Time Dependent Monte Carlo Approach for Nuclear Reactor Analysis in a 3-D Arbitrary Geometry
,”
Prog. Nucl. Energy
,
115
, pp.
80
90
.10.1016/j.pnucene.2019.03.024
12.
Cervi
,
E.
,
Cammi
,
A.
, and
Zio
,
E.
,
2019
, “
A New Approach for Nuclear Reactor Analysis Based on Complex Network Theory
,”
Prog. Nucl. Energy
,
112
, pp.
96
106
.10.1016/j.pnucene.2018.12.008
13.
Henry
,
A. F.
,
1975
,
Nuclear-Reactor Analysis
,
The MIT Press
,
Cambridge, MA
.
14.
Haidar
,
N. H. S.
,
1985
, “
Neutron Fission Rate Measurements Across a Poisoning Discontinuity in Water
,”
J. Nucl. Sci. Technol.
,
22
(
6
), pp.
484
490
.10.1080/18811248.1985.9735684
15.
M'silti
,
A.
, and
Tolla
,
P.
,
1993
, “
An Interactive Multiobjective Nonlinear Programing Procedure
,”
Eur. J. Oper. Res.
,
64
(
1
), pp.
115
125
.10.1016/0377-2217(93)90012-C
16.
Miettinen
,
K.
,
1998
,
Nonlinear Multiobjective Optimization
,
Springer
,
Berlin
.
17.
Sundaram
,
R. K.
,
1996
,
A First Course in Optimization Theory
,
Cambridge University Press
,
Cambridge, UK
.
You do not currently have access to this content.