Abstract

Modeling of deterioration of heat transfer (DHT) observed in fluid flows at supercritical pressure remains a challenge due to incomplete understanding of the underlying physics. Given the challenges involved in the experimental and computational study of this phenomenon, it is crucial that the growing collective experimental and computational data be periodically analyzed in a comparative manner through critical reviews. This paper aims to provide such a critical review. The experimental and computational evidence continues to support the postulate that streamwise acceleration of the lower density, near-wall fluid layer relative to the higher density bulk flow promotes reduced turbulent mixing and hence reduced convective heat transport. At lower mass flowrates, this may be driven by buoyancy force, whereas at higher thermal loading, the dominant driver may be the increased favorable streamwise pressure gradient prompted by the bulk flow acceleration. A discussion of these physical mechanisms and an assessment of related semi-empirical models constitute the scope of this review.

References

1.
Styrikovich
,
M. A.
,
Margulova
,
T. K.
, and
Miropol'skii
,
Z. L.
,
1967
, “
Problems in the Development of Designs of Supercritical Boilers
,”
Therm. Eng.
,
14
(
6
), pp.
5
9
.
2.
Lokshin
,
V. A.
,
Semenovker
,
I. E.
, and
Vikhrev
,
V.
,
1968
, “
Calculating the Temperature Conditions of the Radiant Heating Surfaces in Supercritical Boilers
,”
Therm. Eng.
,
15
(
9
), pp.
34
39
.
3.
Shitsman
,
M. E.
,
1963
, “
Impairment of the Heat Transmission at Supercritical Pressures
,”
High Temp.
,
1
(
2
), pp.
237
244
.
4.
Shitsman
,
M. E.
,
1968
, “
Temperature Conditions in Tubes at Supercritical Pressures
,”
Therm. Eng.
,
15
(
4
), pp.
72
77
.
5.
Bourke
,
P. J.
,
Pulling
,
D. J.
,
Gill
,
L. E.
, and
Denton
,
W. H.
,
1970
, “
Forced Convective Heat Transfer to Turbulent CO2 in the Supercritical Region
,”
Int. J. Heat Mass Transfer
,
13
(
8
), pp.
1339
1348
.10.1016/0017-9310(70)90074-8
6.
Hsu
,
Y.-Y.
, and
Smith
,
J. M.
,
1961
, “
The Effect of Density Variation on Heat Transfer in the Critical Region
,”
ASME J. Heat Transfer
,
83
(
2
), pp.
176
181
.10.1115/1.3680510
7.
Hall
,
W. B.
,
Jackson
,
J. D.
, and
Watson
,
A.
,
1968
, “
A Review of Forced Convection Heat Transfer to Fluids at Supercritical Pressures
,”
Proc. Instn. Mech. Eng.
,
182
(
Pt. 3I
), pp.
10
22
. 10.1243/PIME_CONF_1967_182_262_02
8.
Carr
,
A. D.
,
Connor
,
M. A.
, and
Buhr
,
H. O.
,
1973
, “
Velocity, Temperature, and Turbulence Measurements in Air for Pipe Flow With Combined Free and Forced Convection
,”
ASME J. Heat Transfer
,
95
(
4
), pp.
445
452
.10.1115/1.3450087
9.
Sreenivasan
,
K. R.
,
1982
, “
Laminarescent, Relaminarizing and Retransitional Flows
,”
Acta Mech.
,
44
(
1–2
), pp.
1
48
.10.1007/BF01190916
10.
Shehata
,
A. M.
, and
McEligot
,
D. M.
,
1998
, “
Mean Structure in the Viscous Layer of Strongly-Heated Internal Gas Flows. Measurements
,”
Int. J. Heat Mass Transfer
,
41
(
24
), pp.
4297
4313
.10.1016/S0017-9310(98)00088-X
11.
Chu
,
X.
,
Laurien
,
E.
, and
McEligot
,
D. M.
,
2016
, “
Direct Numerical Simulation of Strongly Heated Air Flow in a Vertical Pipe
,”
Int. J. Heat Mass Transfer
,
101
, pp.
1163
1176
.10.1016/j.ijheatmasstransfer.2016.05.038
12.
Petukhov
,
B. S.
,
Kurganov
,
V. A.
, and
Ankudinov
,
V. B.
,
1983
, “
Heat Transfer and Flow Resistance in the Turbulent Pipe Flow of a Fluid With Near-Critical State Parameters
,”
High Temp.
,
21
(
1
), pp.
81
89
.
13.
Ishigai
,
S.
,
Kadgi
,
M.
,
Nakamoto
,
M.
,
Nohara
,
Y.
, and
Hashimoto
,
H.
,
1981
, “
Heat Transfer and Pressure Drop Under Water Flow at Supercritical Pressure
,”
JSME J. Ser. B.
,
47
(
424
), pp.
2333
2342
(in Japanese). 10.1299/kikaib.47.2333
14.
Petukhov
,
B. S.
,
Genin
,
L. G.
, and
Kovalev
,
S. A.
,
1986
,
Heat Transfer in Nuclear Power Installations
,
Energoatomizdat
,
Moscow, Russia
.
15.
Kurganov
,
V. A.
,
Zeigarnik
,
Y. A.
, and
Maslakova
,
I. V.
,
2013
, “
Heat Transfer and Hydraulic Resistance of Supercritical Pressure Coolants: Part III—Generalized Description of SCP Fluids Normal Heat Transfer, Empirical Calculating Correlations, Integral Method of Theoretical Calculations
,”
Int. J. Heat Mass Transfer
,
67
, pp.
535
547
.10.1016/j.ijheatmasstransfer.2013.07.056
16.
Wang
,
H.
,
Leung
,
L. K. H.
,
Wang
,
W.
, and
Bi
,
Q.
,
2018
, “
A Review on Recent Heat Transfer Studies to Supercritical Pressure Water in Channels
,”
App. Therm. Eng.
,
142
, pp.
573
596
.10.1016/j.applthermaleng.2018.07.007
17.
Kurganov
,
V. A.
,
Zeigarnik
,
Y. A.
, and
Maslakova
,
I. V.
,
2013
, “
Heat Transfer and Hydraulic Resistance of Supercritical-Pressure Coolants: Part II—Experimental Data on Hydraulic Resistance and Averaged Turbulent Flow Structure of Supercritical Pressure Fluids During Heating in Round Tubes Under Normal and Deteriorated Heat Transfer Conditions
,”
Int. J. Heat Mass Transfer
,
58
(
1–2
), pp.
152
167
.10.1016/j.ijheatmasstransfer.2012.10.072
18.
Wood
,
R. D.
, and
Smith
,
J. M.
,
1964
, “
Heat Transfer in the Critical Region—Temperature and Velocity Profiles in Turbulent Flow
,”
AIChE J.
,
10
(
2
), pp.
180
186
.10.1002/aic.690100210
19.
Wilson
,
M. T.
,
1969
, “
Flow and Thermal Characteristics of Hydrogen Near Its Critical Point in a Heated Cylindrical Tube
,”
Los Alamos Scientific Laboratory of the University of California
,
Los Alamos, NM
, p.
144
, Report No. LA-4172.
20.
Bourke
,
P. J.
, and
Pulling
,
D. J.
,
1971
, “
An Experimental Explanation of Deterioration in Heat Transfer to Supercritical Carbon Dioxide
,” Chemical Engineering Division, U.K.A.E.A. Research Group, Atomic Energy Research Establishment, Harwell, p.
12,
Report No. AERE – R.6765.
21.
Kurganov
,
V. A.
, and
Kaptil'ny
,
A. G.
,
1992
, “
Velocity and Enthalpy Fields and Eddy Diffusivities in a Heated Supercritical Fluid Flow
,”
Exp. Therm. Fluid Sci.
,
5
(
4
), pp.
465
478
.10.1016/0894-1777(92)90033-2
22.
Kurganov
,
V. A.
,
Ankudinov
,
V. B.
, and
Kaptil'ni
,
A.
,
1986
, “
Experimental-Study of Velocity and Temperature-Fields in an Ascending Flow of Carbon-Dioxide at Supercritical Pressure in a Heated Vertical Pipe
,”
High Temp.
,
24
(
6
), pp.
811
818
.
23.
Kurganov
,
V. A.
, and
Kaptilnyi
,
A. G.
,
1993
, “
Flow Structure and Turbulent Transport of a Supercritical Pressure Fluid in a Vertical Heated Tube Under the Conditions of Mixed Convection. Experimental Data
,”
Int. J. Heat Mass Transfer
,
36
(
13
), pp.
3383
3392
.10.1016/0017-9310(93)90020-7
24.
Miller
,
R. S.
,
Harstad
,
K. G.
, and
Bellan
,
J.
,
2001
, “
Direct Numerical Simulations of Supercritical Fluid Mixing Layers Applied to Heptane-Nitrogen
,”
J. Fluid Mech.
,
436
, pp.
1
39
.10.1017/S0022112001003895
25.
Okong'o
,
N. A.
, and
Bellan
,
J.
,
2002
, “
Direct Numerical Simulation of a Transitional Supercritical Binary Mixing Layer: Heptane and Nitrogen
,”
J. Fluid Mech.
,
464
, pp.
1
34
.10.1017/S0022112002008480
26.
Reinink
,
S. K.
, and
Yaras
,
M. I.
,
2015
, “
Study of Coherent Structures of Turbulence With Large Wall-Normal Gradients in Thermophysical Properties Using Direct Numerical Simulation
,”
Phys. Fluids
,
27
(
6
), p.
065113
.10.1063/1.4922388
27.
Azih
,
C.
,
Brinkerhoff
,
J. R.
, and
Yaras
,
M. I.
,
2012
, “
Direct Numerical Simulation of Convective Heat Transfer in a Zero-Pressure-Gradient Boundary Layer With Supercritical Water
,”
J. Therm. Sci.
,
21
(
1
), pp.
49
59
.10.1007/s11630-012-0518-5
28.
Kawai
,
S.
,
Terashima
,
H.
, and
Negishi
,
H.
,
2015
, “
A Robust and Accurate Numerical Method for Transcritical Turbulent Flows at Supercritical Pressure With an Arbitrary Equation of State
,”
J. Comp. Phys.
,
300
, pp.
116
135
.10.1016/j.jcp.2015.07.047
29.
Kawai
,
S.
,
2016
, “
Direct Numerical Simulation of Transcritical Turbulent Boundary Layers at Supercritical Pressures With Strong Real Fluid Effects
,”
AIAA
Paper No.
2016
1934
.
30.
Dave
,
N.
,
Azih
,
C.
, and
Yaras
,
M. I.
,
2013
, “
A DNS Study on the Effects of Convex Streamwise Curvature on Coherent Structures in a Temporally-Developing Turbulent Boundary Layer With Supercritical Water
,”
Int. J. Heat Fluid Flow
,
44
, pp.
635
643
.10.1016/j.ijheatfluidflow.2013.09.003
31.
Bae
,
J. H.
,
Yoo
,
J. Y.
, and
Choi
,
H.
,
2005
, “
Direct Numerical Simulation of Turbulent Supercritical Flows With Heat Transfer
,”
Phys. Fluids
,
17
(
10
), p. 105104.10.1063/1.2047588
32.
Nemati
,
H.
,
Patel
,
A.
,
Boersma
,
B. J.
, and
Pecnik
,
R.
,
2015
, “
Mean Statistics of a Heated Turbulent Pipe Flow at Supercritical Pressure
,”
Int. J. Heat Mass Transfer
,
83
, pp.
741
752
.10.1016/j.ijheatmasstransfer.2014.12.039
33.
Chu
,
X.
, and
Laurien
,
E.
,
2015
, “
Direct Numerical Simulation of Heated Turbulent Pipe Flow at Supercritical Pressure
,”
ASME J. Nucl. Rad. Sci.
,
2
(
3
), p.
11
.10.1115/1.4032479
34.
Nemati
,
H.
,
Patel
,
A.
,
Boersma
,
B. J.
, and
Pecnik
,
R.
,
2016
, “
The Effect of Thermal Boundary Conditions on Forced Convection Heat Transfer to Fluids at Supercritical Pressure
,”
J. Fluid Mech.
,
800
, pp.
531
556
.10.1017/jfm.2016.411
35.
Liu
,
J.
,
Jin
,
Y.
,
Zhao
,
P.
,
Ge
,
Z.
,
Li
,
Y.
, and
Wan
,
Y.
,
2019
, “
Analysis of Heat Transfer of Supercritical Water by Direct Numerical Simulation of Heated Upward Pipe Flows
,”
Int. J. Therm. Sci.
,
138
, pp.
206
218
.10.1016/j.ijthermalsci.2018.12.028
36.
Azih
,
C.
, and
Yaras
,
M. I.
,
2018
, “
Effects of Spatial Gradients in Thermophysical Properties on the Topology of Turbulence in Heated Channel Flow of Supercritical Fluids
,”
Phys. Fluids
,
30
(
1
), p.
015108
.10.1063/1.5009295
37.
Pandey
,
S.
,
Chu
,
X.
,
Laurien
,
E.
, and
Weigand
,
B.
,
2018
, “
Buoyancy Induced Turbulence Modulation in Pipe Flow at Supercritical Pressure Under Cooling Conditions
,”
Phys. Fluids
,
30
(
6
), p.
065105
.10.1063/1.5029892
38.
Bae
,
J. H.
,
Yoo
,
J. Y.
, and
McEligot
,
D. M.
,
2008
, “
Direct Numerical Simulation of Heated CO2 Flows at Supercritical Pressure in a Vertical Annulus at Re = 8900
,”
Phys. Fluids
,
20
(
5
), p.
055108
.10.1063/1.2927488
39.
Peeters
,
J. W. R.
,
Pecnik
,
R.
,
Rohde
,
M.
,
van der Hagen
,
T. H. J. J.
, and
Boersma
,
B. J.
,
2016
, “
Turbulence Attenuation in Simultaneously Heated and Cooled Annular Flows at Supercritical Pressure
,”
J. Fluid Mech.
,
799
, pp.
505
540
.10.1017/jfm.2016.383
40.
Peeters
,
J. W. R.
,
Pecnik
,
R.
,
Rohde
,
M.
,
van der Hagen
,
T. H. J. J.
, and
Boersma
,
B. J.
,
2017
, “
Characteristics of Turbulent Heat Transfer in an Annulus at Supercritical Pressure
,”
Phys. Rev. Fluids
,
2
(
2
), p.
24
.10.1103/PhysRevFluids.2.024602
41.
Sengupta
,
U.
,
Nemati
,
H.
,
Boersma
,
B. J.
, and
Pecnik
,
R.
,
2017
, “
Fully Compressible Low-Mach Number Simulations of Carbon-Dioxide at Supercritical Pressures and Trans-Critical Temperatures
,”
Flow Turbul. Combust.
,
99
(
3–4
), pp.
909
931
.10.1007/s10494-017-9872-4
42.
Kim
,
K.
, and
Hickey
,
J.-P.
,
2017
, “
Numerical Investigation of Transcritical-T Heat-and-Mass-Transfer Dynamics in Compressible Turbulent Channel Flow
,”
AIAA
Paper No. 2017-1711. 10.2514/6.2017-1711
43.
Ma
,
P. C.
, and
Yang
,
X. I. A.
,
2018
, “
Direct Numerical Simulations of Turbulent Channel Flow Under Transcritical Conditions
,”
AIAA
Paper No. 2018-0582. 10.2514/6.2018-0582
44.
Mokry
,
S.
,
Pioro
,
I.
,
Farah
,
A.
,
King
,
K.
,
Gupta
,
S.
,
Peiman
,
W.
, and
Kirillov
,
P.
,
2011
, “
Development of Supercritical Water Heat-Transfer Correlation for Vertical Bare Tubes
,”
Nucl. Eng. Des.
,
241
(
4
), pp.
1126
1136
.10.1016/j.nucengdes.2010.06.012
45.
Gupta
,
S.
,
Saltanov
,
E.
,
Mokry
,
S. J.
,
Pioro
,
I.
,
Trevani
,
L.
, and
McGillivray
,
D.
,
2013
, “
Developing Empirical Heat-Transfer Correlations for Supercritical CO2 Flowing in Vertical Tubes
,”
Nucl. Eng. Des.
,
261
, pp.
116
131
.10.1016/j.nucengdes.2013.02.048
46.
Cheng
,
X.
,
Yang
,
Y. H.
, and
Huang
,
S. F.
,
2009
, “
A Simplified Method for Heat Transfer Prediction of Supercritical Fluids in Circular Tubes
,”
Ann. Nucl. Energy
,
36
(
8
), pp.
1120
1128
.10.1016/j.anucene.2009.04.016
47.
Kim
,
D. E.
, and
Kim
,
M.-H.
,
2011
, “
Experimental Investigation of Heat Transfer in Vertical Upward and Downward Supercritical CO2 Flow in a Circular Tube
,”
Int. J. Heat Fluid Flow
,
32
(
1
), pp.
176
191
.10.1016/j.ijheatfluidflow.2010.09.001
48.
Deev
,
V. I.
,
Kharitonov
,
V. S.
,
Baisov
,
A. M.
, and
Churkin
,
A. N.
,
2018
, “
Universal Dependencies for the Description of Heat Transfer Regimes in Turbulent Flow of Supercritical Fluid in Channels of Various Geometries
,”
J. Supercrit. Fluids
,
135
, pp.
160
167
.10.1016/j.supflu.2018.01.019
49.
Cheng
,
X.
,
Zhao
,
M.
,
Feuerstein
,
F.
, and
Liu
,
X. J.
,
2019
, “
Prediction of Heat Transfer to Supercritical Water at Different Boundary Conditions
,”
Int. J. Heat Mass Transfer
,
131
, pp.
527
536
.10.1016/j.ijheatmasstransfer.2018.11.028
50.
Liu
,
S.
,
Huang
,
Y.
,
Liu
,
G.
,
Wang
,
J.
, and
Leung
,
L. K. H.
,
2017
, “
Improvement of Buoyancy and Acceleration Parameters for Forced and Mixed Convective Heat Transfer to Supercritical Fluids Flowing in Vertical Tubes
,”
Int. J. Heat Mass Transfer
,
106
, pp.
1144
1156
.10.1016/j.ijheatmasstransfer.2016.10.093
51.
Chen
,
W.
, and
Fang
,
X.
,
2014
, “
A New Heat Transfer Correlation for Supercritical Water Flowing in Vertical Tubes
,”
Int. J. Heat Mass Transfer
,
78
, pp.
156
160
.10.1016/j.ijheatmasstransfer.2014.06.059
52.
Deev
,
V. I.
,
Kharitonov
,
V. S.
, and
Churkin
,
A. N.
,
2017
, “
Analysis and Generalization of Experimental Data on Heat Transfer to Supercritical Pressure Water Flow in Annular Channels and Rod Bundles
,”
Therm. Eng.
,
64
(
2
), pp.
142
150
.10.1134/S0040601516110021
53.
Bae
,
Y.-Y.
,
Kim
,
H.-Y.
, and
Kang
,
D.-J.
,
2010
, “
Forced and Mixed Convection Heat Transfer to Supercritical CO2 Vertically Flowing in a Uniformly-Heated Circular Tube
,”
Exp. Therm. Fluid Sci.
,
34
(
8
), pp.
1295
1308
.10.1016/j.expthermflusci.2010.06.001
54.
Liu
,
S.
,
Huang
,
Y.
,
Liu
,
G.
,
Wang
,
J.
, and
Leung
,
L. K. H.
,
2017
, “
A Predictive-Corrective Process for Predicting Forced Convective Heat Transfer in Heated Tubes at Supercritical Pressures
,”
Int. J. Heat Mass Transfer
,
110
, pp.
374
382.
10.1016/j.ijheatmasstransfer.2017.03.058
55.
Tanaka
,
H.
,
Tsuge
,
A.
,
Hirata
,
M.
, and
Nishiwaki
,
N.
,
1973
, “
Effects of Buoyancy and of Acceleration Owing to Thermal Expansion on Forced Turbulent Convection in Vertical Circular Tubes—Criteria of the Effects, Velocity and Temperature Profiles, and Reverse Transition From Turbulent to Laminar Flow
,”
Int. J. Heat Mass Transfer
,
16
(
6
), pp.
1267
1288
.10.1016/0017-9310(73)90135-X
56.
Kurganov
,
V. A.
,
Zeigarnik
,
Y. A.
, and
Maslakova
,
I. V.
,
2014
, “
Heat Transfer and Hydraulic Resistance of Supercritical Pressure Coolants: Part IV—Problems of Generalized Heat Transfer Description, Methods of Predicting Deteriorated Heat Transfer; Empirical Correlations; Deteriorated Heat Transfer Enhancement; Dissolved Gas Effects
,”
Int. J. Heat Mass Transfer
,
77
, pp.
1197
1212
. 10.1016/j.ijheatmasstransfer.2014.06.014
57.
Polyakov
,
A. F.
,
1973
, “
Transient Effects Due to Thermogravity in Turbulence and Heat Transfer
,”
High Temp.
,
11
(
1
), pp.
90
98
.
58.
Polyakov
,
A. F.
,
1975
, “
Mechanism and Limits on the Formation of Conditions for Impaired Heat Transfer at a Supercritical Coolant Pressure
,”
High Temp.
,
13
(
6
), pp.
1119
1126
.
59.
Petukhov
,
B. S.
, and
Polyakov
,
A. F.
,
1988
,
Heat Transfer in Turbulent Mixed Convection
,
B. E.
Launder
, ed.,
Hemisphere Publishing Corporation
,
New York
.
60.
Polyakov
,
A. F.
,
1991
, “
Heat Transfer Under Supercritical Pressures
,”
Advances in Heat Transfer, Vol. 21
,
J. P.
Hartnett
,
T. F.
Irvine
, and
Y. I.
Cho
, eds., , Academic Press, Inc., San Diego, CA, pp. 1-53 .
61.
Jackson
,
J. D.
,
2016
, “
Screening and Correlating Data on Heat Transfer to Fluids at Supercritical Pressure
,”
ASME J. Nucl. Rad. Sci.
,
2
(
1
), p.
011001
.10.1115/1.4031378
62.
Jackson
,
J. D.
,
2008
, “
A Semi-Emperical Model of Turbulent Convective Heat Transfer to Fluids at Supercritical Pressure
,”
ASME
Paper No. ICONE16-48914.10.1115/ICONE16-48914
63.
Jackson
,
J. D.
,
2009
, “
Progress in Developing an Improved Empirical Heat Transfer Equation for Use in Connection With Advanced Nuclear Reactors Cooled by Water at Supercritical Pressure
,”
ASME
Paper No. ICONE17-76022.10.1115/ICONE17-76022
64.
Jackson
,
J. D.
,
2013
, “
Fluid Flow and Convective Heat Transfer to Fluids at Supercritical Pressure
,”
Nucl. Eng. Des.
,
264
, pp.
24
40
.10.1016/j.nucengdes.2012.09.040
65.
IAEA,
2014
, “
Heat Transfer Behavior and Thermohydraulics Code Testing for Supercritical Water-Cooled Reactors (SCWRs)
,”
IAEA
,
Vienna, Austria
, Paper No.
IAEA-TECDOC-1746
.
66.
Hall
,
W. B.
, and
Price
,
P. H.
,
1972
, “
Interaction Between a Turbulent Free Convection Layer and a Downward Forced Flow
,” Heat and Mass Transfer by Combined Forced and Natural Convection, Institution of Mechanical Engineers, London, UK, Paper No. C113/71, pp.
6
12
.
67.
Fewster
,
J.
,
1976
, “
Mixed Forced and Free Convective Heat Transfer to Supercritical Pressure Fluids Flowing in Vertical Pipes
,” Ph.D. thesis,
The University of Manchester
, Manchester, UK.
68.
Jackson
,
J. D.
, and
Fewster
,
J.
,
1977
, “
Enhancement of Turbulent Heat Transfer Due to Buoyancy for Downward Flow of Water in Vertical Tubes
,”
Heat Transfer and Turbulent Buoyant Convection, Procs. 1976 ICHMT Seminar, Dubrovnik, Yugoslavia
,
D. B.
Spalding
, and
N.
Afgan
, eds.,
Hemisphere Publishing Corporation
, Washington, DC, pp.
759
775
.
69.
Razumovskii
,
V. G.
,
Ornatskii
,
A. P.
, and
Maevskii
,
E. M.
,
1984
, “
Hydraulic Resistance and Heat Transfer of Smooth Channels With Turbulent Flow of Water at Supercritical Pressure
,”
Therm. Eng.
,
31
(
2
), pp.
109
113
.
70.
Filonenko
,
G. K.
,
1954
, “
Hydraulic Resistance in Pipelines
,”
Teploenergetika
,
1
(
4
), pp.
40
44
.
71.
Zhang
,
G.
,
Zhang
,
H.
,
Gu
,
H.
,
Yang
,
Y.
, and
Cheng
,
X.
,
2012
, “
Experimental and Numerical Investigation of Turbulent Convective Heat Transfer Deterioration of Supercritical Water in Vertical Tube
,”
Nucl. Eng. Des.
,
248
, pp.
226
237
.10.1016/j.nucengdes.2012.03.026
72.
Zahlan
,
H.
,
Groeneveld
,
D.
, and
Tavoularis
,
S.
,
2015
, “
Measurements of Convective Heat Transfer to Vertical Upward Flows of CO2 in Circular Tubes at Near-Critical and Supercritical Pressures
,”
Nucl. Eng. Des.
,
289
, pp.
92
107
.10.1016/j.nucengdes.2015.04.013
73.
Kurganov
,
V. A.
,
Zeigarnik
,
Y. A.
, and
Maslakova
,
I. V.
,
2012
, “
Heat Transfer and Hydraulic Resistance of Supercritical-Pressure Coolants: Part I—Specifics of Thermophysical Properties of Supercritical Pressure Fluids and Turbulent Heat Transfer Under Heating Conditions in Round Tubes (State of the Art)
,”
Int. J. Heat Mass Transfer
,
55
(
11–12
), pp.
3061
3075
.10.1016/j.ijheatmasstransfer.2012.01.031
74.
Kurganov
,
V. A.
,
Ankudinov
,
V. B.
, and
Kaptilnyi
,
A. G.
,
1989
, “
Total Flow Resistance and Fluid Friction Associated With Ascending and Descending Supercritical Fluid Flow in Heated Pipes
,”
High Temp.
,
27
(
1
), pp.
87
94
.
75.
Cheng
,
H.
,
Zhao
,
J.
, and
Rowinski
,
M. K.
,
2017
, “
Study on Two Wall Temperature Peaks of Supercritical Fluid Mixed Convective Heat Transfer in Circular Tubes
,”
Int. J. Heat Mass Transfer
,
113
, pp.
257
267
.10.1016/j.ijheatmasstransfer.2017.05.078
76.
Shen
,
Z.
,
Yang
,
D.
,
Wang
,
S.
,
Wang
,
W.
, and
Li
,
Y.
,
2017
, “
Experimental and Numerical Analysis of Heat Transfer to Water at Supercritical Pressures
,”
Int. J. Heat Mass Transfer
,
108
, pp.
1676
1688
.10.1016/j.ijheatmasstransfer.2016.12.081
77.
Sun
,
F.
,
Li
,
Y.
,
Manca
,
O.
, and
Xie
,
G.
,
2019
, “
On Assessment of Heat Transfer Deterioration of a Channel With Supercritical n-Decane for Scramjet Engines Cooling
,”
Int. J. Heat Mass Transfer
,
135
, pp.
782
795
.10.1016/j.ijheatmasstransfer.2019.02.027
78.
Cheng
,
H.
,
Yanlin
,
A. B.
,
Wang
,
J.
, and
Zhao
,
J.
,
2019
, “
Diameter Effect on the Wall Temperature Behaviors During Supercritical Water Heat Transfer Deterioration in Circular Tubes and Annular Channels
,”
Front. Energy Res.
,
7
, p.
13
. 10.3389/fenrg.2019.00073
79.
Rohde
,
M.
,
Peeters
,
J. W. R.
,
Pucciarelli
,
A.
,
Kiss
,
A.
,
Rao
,
Y.
,
Onder
,
E.
,
Mühlbauer
,
P.
,
Batta
,
A.
,
Hartig
,
M.
,
Chatoorgoon
,
V.
,
Thiele
,
R.
,
Chang
,
D.
,
Tavoularis
,
S.
,
Novog
,
D.
,
McClure
,
D.
,
Gradecka
,
M.
, and
Takase
,
K.
,
2016
, “
A Blind, Numerical Benchmark Study on Supercritical Water Heat Transfer Experiments in a 7-Rod Bundle
,”
ASME J. Nucl. Rad Sci.
,
2
(
2
), p.
021012
.10.1115/1.4031949
80.
Razumovskiy
,
V. G.
,
Pis'mennyi
,
E. N.
,
Sidawi
,
K.
,
Pioro
,
I. L.
,
Koloskov
,
A.
, and
Eu
, “
Experimental Heat Transfer in an Annular Channel and 3-Rod Bundle Cooled With Upward Flow of Supercritical Water
,”
ASME J. Nucl. Rad. Sci.
,
2
(
1
), p.
011010
.10.1115/1.4031818
81.
McEligot
,
D. M.
, and
Jackson
,
J. D.
,
2004
, “
Deterioration Criteria for Convective Heat Transfer in Gas Flow Through Non-Circular Ducts
,”
Nucl. Eng. Des.
,
232
(
3
), pp.
327
333
.10.1016/j.nucengdes.2004.05.004
82.
Schulenberg
,
T.
, and
Leung
,
L.
,
2016
, “
Super-Critical Water-Cooled Reactors
,”
Handbook of Generation IV Nuclear Reactors
,
I. L.
Pioro
, ed.,
Elsevier Ltd
, pp.
189
220
.
83.
Dominguez
,
A. N.
,
Onder
,
N.
,
Rao
,
Y.
, and
Leung
,
L.
,
2016
, “
Evolution of the Canadian SCWR Fuel-Assembly Concept and Assessment of the 64 Element Assembly for Thermalhydraulic Performance
,”
CNL Nucl. Rev.
,
5
(
2
), pp.
221
238
.10.12943/CNR.2015.00057
84.
Meyer
,
L.
,
2010
, “
From Discovery to Recognition of Periodic Large Scale Vortices in Rod Bundles as Source of Natural Mixing Between Subchannels—A Review
,”
Nucl. Eng. Des.
,
240
(
6
), pp.
1575
1588
.10.1016/j.nucengdes.2010.03.014
85.
Tavoularis
,
S.
,
2011
, “
Rod Bundle Vortex Networks, Gap Vortex Streets, and Gap Instability: A Nomenclature and Some Comments on Available Methodologies
,”
Nucl. Eng. Des.
,
241
(
7
), pp.
2624
2626
.10.1016/j.nucengdes.2011.03.052
86.
Duan
,
Y.
, and
He
,
S.
,
2017
, “
Large Eddy Simulation of a Buoyancy-Aided Flow in a Non-Uniform Channel—Buoyancy Effects on Large Flow Structures
,”
Nucl. Eng. Des.
,
312
, pp.
191
204
.10.1016/j.nucengdes.2016.05.007
87.
Eter
,
A.
,
Groeneveld
,
D.
, and
Tavoularis
,
S.
,
2016
, “
An Experimental Investigation of Supercritical Heat Transfer in a Three-Rod Bundle Equipped With Wire-Wrap and Grid Spacers Cooled by Carbon Dioxide
,”
Nucl. Eng. Des.
,
303
, pp.
173
191
.10.1016/j.nucengdes.2016.04.002
88.
Gu
,
H.-Y.
,
Hu
,
Z.-X.
,
Liu
,
D.
,
Li
,
H.-B.
,
Zhao
,
M.
, and
Cheng
,
X.
,
2016
, “
Experimental Study on Heat Transfer to Supercritical Water in 2 x 2 Rod Bundle With Wire Wraps
,”
Exp. Therm. Fluid Sci.
,
70
, pp.
17
28
.10.1016/j.expthermflusci.2015.08.015
89.
Yamashita
,
T.
,
Yoshida
,
S.
,
Mori
,
H.
,
Morooka
,
S.
,
Komita
,
H.
, and
Nishida
,
K.
,
2003
, “
Heat Transfer Study Under Supercritical Pressure Conditions
,”
International Conference on Global Environment and Advanced Nuclear Power Plants
(
GENES4/ANP2003
),
Japan
, Sept. 15–19, Paper No. 1119.https://pdfs.semanticscholar.org/8748/a788998d9bfd012d5076d1fc88ced1b482e9.pdf
90.
Mokry
,
S.
,
Pioro
,
I.
,
Kirillov
,
P.
, and
Gospodinov
,
Y.
,
2010
, “
Supercritical-Water Heat Transfer in a Vertical Bare Tube
,”
Nucl. Eng. Des.
,
240
(
3
), pp.
568
576
.1016/j.nucengdes.2009.09.003
91.
Jackson
,
J. D.
,
2017
, “
Models of Heat Transfer to Fluids at Supercritical Pressure With Influences of Buoyancy and Acceleration
,”
App. Therm. Eng.
,
124
, pp.
1481
1491
.10.1016/j.applthermaleng.2017.03.146
You do not currently have access to this content.