Abstract

Characterizing the permeation performance of nanoporous material is an initial step toward predicting microflows and achieving acceptable designs in sealing and filtration applications. This study deals with analytical, numerical, and experimental studies of gaseous leaks through soft packing materials subjected to nonuniform axial compression in valve stuffing boxes. A new analytical model that accurately predicts gaseous leak rates through nanoporous packing materials assumed made of capillaries having an exponentially varying section. Based on Navier–Stokes equations with the first-order velocity slip condition for tapered cylinder capillaries, the analytical model is used to estimate gas flow through soft packing materials. In addition, computational fluid dynamic modeling using cfx software is used to test its capacity to estimate the permeation of compression packing ring materials assuming the fluid flow to follow Darcy's law. Helium gas is used as a reference gas in the experiments to characterize the porosity parameters. The analytical and cfx numerical leak predictions are compared to leak rates measured experimentally using different gas types (helium, nitrogen, air, and argon) at different pressures and gland stresses. The analytical and numerical models account for the porosity change with the stem axial distance because the packing ring set is subjected to an exponentially varying radial compression. The predictions from analytical model are in close agreement with the cfx model and in better agreement with experimental measurements.

References

References
1.
Flitney
,
R. K.
,
2014
,
Seals and Sealing Handbook
,
6
th ed.,
Butterworth-Heinemann, Oxford, UK.
2.
Schaaf
,
M.
, and
Schoeckle
,
F.
,
2009
, “
Technical Approach for the Reduction of Fugitive Emissions
,”
ASME
Paper No. PVP2009-78125.10.1115/PVP2009-78125
3.
Veiga
,
J. C.
,
Cipollati
,
C.
,
Girão
,
C.
,
Ascenco
,
L.
, and
Castro
,
F.
,
2008
, “
Valve Packings Seating Stress
,”
ASME
Paper No. PVP2008-61214.10.1115/PVP2008-61214
4.
Payne
,
J. R.
, and
Schneider
,
R. W.
,
1996
, “
Comparison of Proposed ASME Rules for Bolted Flanged Joints
,”
International Conference on Pressure Vessel Technology
, Montreal, QC, Canada, July 21–26, pp.
147
167
.
5.
Knudsen
,
M.
,
1909
, “Die Gesetze der Molekularströmung und der inneren Reibungsströmung der Gase durch Röhren,” Ann. Phys., 333(1), pp. 75–130.
6.
Beskok
,
A.
,
Karniadakis
,
G. E.
, and
Trimmer
,
W.
,
1996
, “
Rarefaction and Compressibility Effects in Gas Microflows
,”
ASME J. Fluids Eng.
,
118
(
3
), pp.
448
456
.10.1115/1.2817779
7.
Tison
,
S.
,
1993
, “
Experimental Data and Theoretical Modeling of Gas Flows Through Metal Capillary Leaks
,”
J. Vac.
,
44
(
11–12
), pp.
1171
1175
.10.1016/0042-207X(93)90342-8
8.
Arkilic
,
E. B.
,
Schmidt
,
M. A.
, and
Breuer
,
K. S.
,
1997
, “
Gaseous Slip Flow in Long Microchannels
,”
J. Microelectromech. Syst.
,
6
(
2
), pp.
167
178
.10.1109/84.585795
9.
Kazeminia
,
M.
, and
Bouzid
,
A.
,
2016
, “
Predicting Leakage in Packed Stuffing Boxes
,”
BHR Group—23rd International Conference on Fluid Sealing
, Manchester, UK, Mar. 2–3, pp.
45
59.
10.
Aweimer
,
A. S. O.
,
Bouzid
,
A.-H.
, and
Kazeminia
,
M.
,
2019
, “
Predicting Leak Rate Through Valve Stem Packing in Nuclear Applications
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
5
(
1
), p.
011009
.10.1115/1.4040493
11.
Vallabh
,
R.
,
Banks-Lee
,
P.
, and
Seyam
,
A.-F.
,
2010
, “
New Approach for Determining Tortuosity in Fibrous Porous Media
,”
J. Eng. Fabr. Fibers
,
5
(
3
), pp.
7
15
.
12.
Cai
,
J.
,
Perfect
,
E.
,
Cheng
,
C.-L.
, and
Hu
,
X.
,
2014
, “
Generalized Modeling of Spontaneous Imbibition Based on Hagen–Poiseuille Flow in Tortuous Capillaries With Variably Shaped Apertures
,”
J. Langmuir
,
30
(
18
), pp.
5142
5151
.10.1021/la5007204
13.
Kumar
,
S.
, and
Kumar
,
S.
,
2009
, “A Mathematical Model for Newtonian and Non-Newtonian Flow through Tapered Tubes” Indian J. Biomech., pp. 191–195.
14.
Biswas
,
D.
, and
Chakraborty
,
U. S.
,
2010
, “
Steady Flow of Blood Through a Catheterized Tapered Artery With Stenosis: A Theoretical Model
,”
Assam Univ. J. Sci. Technol.: Phys. Sci. Technol.
,
4
(
2
), pp.
7
16
.
15.
Sochi
,
T.
,
2013
, “
Newtonian Flow in Converging-Diverging Capillaries
,”
Int. J. Model., Simul., Sci. Comput.
,
4
(
3
), p.
1350011
.10.1142/S1793962313500116
16.
Sankar
,
D. S.
, and
Hemalatha
,
K.
,
2007
, “Non-Linear Mathematical Models for Blood Flow through Tapered Tubes,”
Appl. Math. Comput.
, 188(1), pp. 567–582.10.1016/j.amc.2006.10.013
17.
Migun
,
N. P.
, and
Shnip
,
A. I.
,
2002
, “
Model of Film Flow in a Dead-End Conic Capillary
,”
J. Eng. Phys. Thermophys.
,
75
(
6
), pp.
1422
1428
.10.1023/A:1022135514496
18.
Amyx
,
J. W.
,
Bass
,
D. M.
, and
Whiting
,
R. L.
,
1960
,
Petroleum Reservoir Engineering: Physical Properties
,
McGraw-Hill
,
Austin, TX
.
19.
Adler
,
P.
,
Jacquin
,
C.
, and
Quiblier
,
J.
,
1990
, “
Flow in Simulated Porous Media
,”
Int. J. Multiphase Flow
,
16
(
4
), pp.
691
712
.10.1016/0301-9322(90)90025-E
20.
Gauvin
,
R.
,
Trochu
,
F.
,
Lemenn
,
Y.
, and
Diallo
,
L.
,
1996
, “
Permeability Measurement and Flow Simulation Through Fiber Reinforcement
,”
J. Polym. Compos.
,
17
(
1
), pp.
34
42
.10.1002/pc.10588
21.
Nield
,
D. A.
, and
Bejan
,
A.
,
2014
,
Convection in Porous Media
,
Springer
,
New York
.
22.
Guo
,
Z. Y.
, and
Wu
,
X. B.
,
1998
, “
Further Study on Compressibility Effects on the Gas Flow and Heat Transfer in a Microtube
,”
J. Microscale Thermophys. Eng.
,
2
(
2
), pp.
111
120
.
23.
Munson-McGee
,
S. H.
,
2002
, “
An Approximate Analytical Solution for the Fluid Dynamics of Laminar Flow in a Porous Tube
,”
J. Membr. Sci.
,
197
(
1–2
), pp.
223
230
.10.1016/S0376-7388(01)00634-2
24.
Ochonski
,
W.
,
1988
, “
Radial Stress Distribution and Friction Forces in a Soft Packed Stuffing-Box Seal
,”
J. Tribol. Int.
,
21
(
1
), pp.
31
38
.10.1016/0301-679X(88)90125-9
25.
Diany
,
M.
, and
Bouzid
,
A.
,
2006
, “
Evaluation of Contact Stress in Stuffing Box Packings
,”
ASME
Paper No. PVP2006-ICPVT11-93083.10.1115/PVP2006-ICPVT11-93083
26.
Grine
,
L.
, and
Bouzid
,
A.
,
2011
, “
Correlation of Gaseous Mass Leak Rates Through Micro and Nano-Porous Gaskets
,”
ASME J. Pressure Vessel Technol.
,
133
(
2
), p.
021402
.10.1115/1.4002742
27.
Aweimer
,
A. S. O.
, and
Bouzid
,
A.
,
2019
, “
Evaluation of Interfacial and Permeation Leaks in Gaskets and Compression Packing
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
5
(
1
), p.
011013
.10.1115/1.4041691
You do not currently have access to this content.