Abstract

The safety behaviors of a nuclear power plant (NPP) after an external hazard-initiated event, as well as after a small break (SB) loss of coolant accident (LOCA), are already well known as part of the analyses made for standard license application. The coincidence of both events leads to a beyond-design basis consideration. Such a combination of both event categories is investigated by means of the thermohydraulic system code ATHLET. The scenario assumes an external event with a LOCA caused by induced vibrations on a small pipe attached to the primary circuit, although all pipes are designed to withstand the loads created by such an external event. Furthermore, in the context of both robustness and enveloping analyses, both a loss of offsite power (LOOP) and an unavailability of the emergency diesel power supply are postulated. The NPP in the scenario considered only has access to the passive accumulators and to systems supplied via the safeguard emergency diesel engines (second quartet of emergency diesel engines), which are housed in the bunkered emergency feed building. The dedicated type of external event itself is not in focus, but rather the thermohydraulic behavior of the NPP is considered. Apart from the model's assumptions, the accident sequence is explained in detail. The remaining systems for emergency core cooling are capable of handling the LOCA under such demanding boundary conditions. Long-term cooling can be ensured. Furthermore, heat removal out of the core is always sufficient. Eventually, all safety protection objectives have been complied for this beyond-design basis scenario.

References

References
1.
German Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety (BMUB)
,
2015
, “
Safety Requirements for Nuclear Power Plants
,” German Federal Gazette (Bundesanzeiger), Berlin, Germany.
2.
E.ON Kernkraft GmbH, and NPP Grohnde
,
2010
, “
(Decennial) Periodic Safety Assessment 2010, Safety Status Analysis
,” E.ON Kernkraft, Hannover, Germany, Chap. 3.3.5.2.1.
3.
Reaktor-Sicherheitskommission (German Reactor Safety Commission)
,
1996
, “
RSK-Guidelines for PWR
,” German Federal Gazette (Bundesanzeiger), Berlin, Germany, Report No. 214.
4.
Austregesilo
,
H.
,
Bals
,
C.
,
Hora
,
A.
,
Lerchl
,
G.
,
Romstedt
,
P.
,
Schöffel
,
P.
,
von der Cron
,
D.
, and
Weyermann
,
F.
,
2012
, “
ATHLET Mod 3.0—Cycle A. Models and Methods
,” Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH, Garching bei München, Germany, Report No. GRS-P-1/Vol. 3 Rev. 3.
5.
Federal Ministry for the Environment, Nature Conservation and Nuclear Safety
,
2011
, “
EU Stresstest—National Report of Germany, Progress Report of September 15
,” Federal Ministry for the Environment, Nature Conservation and Nuclear Safety, Berlin, Germany, accessed Oct. 10, 2019, https://www.bmu.de/fileadmin/bmu-import/files/english/pdf/application/pdf/progress_report_bf.pdf
6.
Wilhelm
,
P.
,
Jobst
,
M.
,
Kozmenkov
,
Y.
,
Schäfer
,
F.
, and
Kliem
,
S.
,
2018
, “
Severe Accident Management Measures for a Generic German PWR—Part I: Station Blackout
,”
Ann. Nucl. Energy
,
122
, pp.
217
228
.10.1016/j.anucene.2018.08.016
7.
Jobst
,
M.
,
Wilhelm
,
P.
,
Kozmenkov
,
Y.
, and
Kliem
,
S.
,
2018
, “
Severe Accident Management Measures for a Generic German PWR—Part II: Small-Break Loss-of-Coolant Accident
,”
Ann. Nucl. Energy
,
122
, pp.
280
296
.10.1016/j.anucene.2018.08.017
8.
Gómez-García-Toraño
,
I.
,
Sánchez-Espinoza
,
V. H.
,
Stieglitz
,
R.
, and
Queral
,
C.
,
2017
, “
Analysis of Primary Bleed and Feed Strategies for Selected SBLOCA Sequences in a German Konvoi PWR Using ASTEC V2.0
,”
Ann. Nucl. Energy
,
110
, pp.
818
832
.10.1016/j.anucene.2017.08.003
9.
Gómez-García-Toraño
,
I.
,
Sánchez-Espinoza
,
V.-H.
,
Stieglitz
,
R.
,
Queral
,
C.
, and
Rebollo
,
M.-J.
,
2018
, “
Assessment of Primary and Secondary Bleed and Feed Procedures During a Station Blackout in a German Konvoi PWR Using ASTECV2.0
,”
Ann. Nucl. Energy
,
113
, pp.
476
492
.10.1016/j.anucene.2017.11.053
10.
KTA
,
2016
, “
Electrical Drive Mechanisms of the Safety System in Nuclear Power Plants, Version 2015-11
,” German Federal Gazette (Bundesanzeiger), Berlin, Germany, KTA Safety Standard, Standard No. 3504.
11.
Lerchl
,
G.
,
Austregesilo
,
H.
,
Schöffel
,
P.
,
von der Cron
,
D.
, and
Weyermann
,
F.
,
2012
, “
ATHLET Mod 3.0—Cycle A. User's Manual
,” Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH, Garching bei München, Germany, Report No. GRS-P-1/Vol. 1 Rev. 6.
12.
Lerchl
,
G.
,
Austregesilo
,
H.
,
Glaeser
,
H.
,
Hrubisko
,
M.
, and
Luther
,
W.
,
2012
, “
ATHLET Mod 3.0—Cycle A. Validation
,” Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH, Garching bei München, Germany, Report No. GRS-P-1/Vol. 3 Rev. 3.
13.
Dräger
,
P.
,
Horche
,
W.
,
Jakubowski
,
Z.
, and
Pointner
,
W.
,
2000
, “
Störfallsimulator Unterweser, Qualifikation der Datenbasis (Accident Simulator NPP Unterweser, Qualification of Database)
,” Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, Garching bei München, Germany, Report No. GRS-A-2802.
14.
Horche
,
W.
,
Kauer
,
W.
,
Lehnart
,
T.
, and
Roßner
,
L.
,
1995
, “
Qualifikation der Datenbasis für das KKW Brokdorf mit dem Programmsystem ATLAS (Qualification of Database of NPP Brokdorf With ATLAS)
,” Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, Garching bei München, Germany, Report No. GRS-A-2323.
You do not currently have access to this content.