Abstract

Flow-accelerated corrosion (FAC) is a life-limiting factor for the piping network of the primary heat transport system (PHTS) in CANDU® reactors. The pipe wall thinning caused by FAC is monitored by carrying out periodic in-service inspections (ISI) to ensure the fitness-for-service of the piping system. Accurate prediction of the lifetime of various components in the PHTS piping network requires estimation of FAC thinning rate. The traditional Bayesian inference techniques commonly employed for parameter estimation are computationally costly. This paper presents an inexpensive and intuitive simulation-based Bayesian approach to FAC rate estimation, called approximate Bayesian computation using Markov chain Monte Carlo (ABC-MCMC). ABC-MCMC is a likelihood-free Bayesian computation scheme that generates samples directly from an approximate posterior distribution by simulating data sets from a forward model. The efficiency of ABC-MCMC is demonstrated by presenting a comparison with a likelihood-based Bayesian computation scheme, Metropolis-Hastings (MH) algorithm, using a practical data-based example. Furthermore, an innovative step has been proposed for reducing the Markov chain burn-in time in the proposed scheme. To indicate the need of a Bayesian approach in quantifying the uncertainties related to the FAC model parameters, results from the linear regression method, a common industrial approach, are also presented in this study. The numerical results show a notable reduction in computational time, suggesting that ABC-MCMC is an efficient alternative to the traditional Bayesian inference methods, specifically for handling noisy degradation data.

References

References
1.
Popov
,
N. K.
,
2019
,
The Essential CANDU—A Textbook on the CANDU Nuclear Power Plant Technology
,
University Network of Excellence in Nuclear Engineering (UNENE)
,
Canada
, Chap. 6.
2.
ASME
, 2013, “
Rules for Construction of Nuclear Facility Components
,” American Society of Mechanical Engineers, New York.
3.
Pandey
,
M. D.
,
Lu
,
D.
, and
Komljenovic
,
D.
,
2011
, “
The Impact of Probabilistic Modeling in Life-Cycle Management of Nuclear Piping Systems
,”
ASME J. Eng. Gas Turbines Power
,
133
(
1
), p.
012901
.10.1115/1.4000897
4.
Jyrkama
,
M. I.
, and
Pandey
,
M. D.
,
2012
, “
Methodology for Predicting Flow-Accelerated Corrosion Wear Using Unreferenced Multiple Inspection Data
,”
Nucl. Eng. Des.
,
250
, pp.
317
325
.10.1016/j.nucengdes.2012.06.003
5.
Dooley
,
R. B.
, and
Chexal
,
V. K.
,
2000
, “
Flow-Accelerated Corrosion of Pressure Vessels in Fossil Plants
,”
Int. J. Pressure Vessels Piping
,
77
(
2–3
), pp.
85
90
.10.1016/S0308-0161(99)00087-3
6.
Yuan
,
X. X.
,
Pandey
,
M. D.
, and
Bickel
,
G. A.
,
2008
, “
A Probabilistic Model of Wall Thinning in CANDU Feeders Due to Flow-Accelerated Corrosion
,”
Nucl. Eng. Des.
,
238
(
1
), pp.
16
24
.10.1016/j.nucengdes.2007.06.004
7.
Berge
,
P.
,
Ducreux
,
J.
, and
Saint-Paul
,
P.
,
1981
, “
Effects of Chemistry on Corrosion-Erosion of Steels in Water and Wet Steam
,”
Water Chemistry of Nuclear Reactor Systems 2
,
British Nuclear Energy Society
,
London
.
8.
Burrill
,
K. A.
,
1995
,
Modeling Flow-Accelerated Corrosion in CANDU
,
Atomic Energy of Canada Ltd
,
Chalk River, ON, Canada
.
9.
Burrill
,
K. A.
, and
Cheluget
,
E. L.
,
1999
,
Corrosion of CANDU Outlet Feeder Pipes
,
Atomic Energy of Canada Limited
,
Chalk River, ON, Canada
.
10.
Ducreux
,
J.
,
1983
, “
The Influence of Flow Velocity on the Corrosion-Erosion of Carbon Steel in Pressurized Water
,”
Water Chemistry of Nuclear Reactor Systems 3 Vol. 1. Proceedings of an International Conference Organised by the British Nuclear Energy Society and co-Sponsored by the Institution of Chemical Engineers and the Royal Society of Chemistry
, Bournemouth, UK, Oct. 17–21, pp. 227–233.
11.
Berger
,
F. P.
, and
Hau
,
K. F. L.
,
1977
, “
Mass Transfer in Turbulent Pipe Flow Measured by the Electrochemical Method
,”
Int. J. Heat Mass Transfer
,
20
(
11
), pp.
1185
1194
.10.1016/0017-9310(77)90127-2
12.
Box
,
G. E.
, and
Tiao
,
G. C.
,
2011
,
Bayesian Inference in Statistical Analysis
, Vol.
40
,
Wiley
,
Hoboken, NJ
.
13.
Nikulin
,
M. S.
,
Limnios
,
N.
,
Balakrishnan
,
N.
,
Kahle
,
W.
, and
Huber-Carol
,
C.
,
2010
, “
Advances in Degradation Modeling: Applications to Reliability
,”
Survival Anal., Finance
,
30
, pp. 3–16.10.1007/978-0-8176-4924-1
14.
Hamada
,
M. S.
,
Wilson
,
A.
,
Reese
,
C. S.
, and
Martz
,
H.
,
2008
,
Bayesian Reliability
,
Springer Science & Business Media
,
New York
.
15.
Bousquet
,
N.
,
Fouladirad
,
M.
,
Grall
,
A.
, and
Paroissin
,
C.
,
2015
, “
Bayesian Gamma Processes for Optimizing Condition‐Based Maintenance Under Uncertainty
,”
Appl. Stochastic Models Bus. Ind.
,
31
(
3
), pp.
360
379
.10.1002/asmb.2076
16.
McNeish
,
D.
,
2016
, “
On Using Bayesian Methods to Address Small Sample Problems
,”
Struct. Equation Model.: A Multidiscip. J.
,
23
(
5
), pp.
750
773
.10.1080/10705511.2016.1186549
17.
Marin
,
J. M.
,
Pudlo
,
P.
,
Robert
,
C. P.
, and
Ryder
,
R. J.
,
2012
, “
Approximate Bayesian Computational Methods
,”
Stat. Comput.
,
22
(
6
), pp.
1167
1180
.10.1007/s11222-011-9288-2
18.
Sunnåker
,
M.
,
Busetto
,
A. G.
,
Numminen
,
E.
,
Corander
,
J.
,
Foll
,
M.
, and
Dessimoz
,
C.
,
2013
, “
Approximate Bayesian Computation
,”
PLoS Comput. Biol.
,
9
(
1
), p.
e1002803
.10.1371/journal.pcbi.1002803
19.
Csilléry
,
K.
,
Blum
,
M. G.
,
Gaggiotti
,
O. E.
, and
François
,
O.
,
2010
, “
Approximate Bayesian Computation (ABC) in Practice
,”
Trends Ecol. Evol.
,
25
(
7
), pp.
410
418
.10.1016/j.tree.2010.04.001
20.
Beaumont
,
M. A.
,
Cornuet
,
J. M.
,
Marin
,
J. M.
, and
Robert
,
C. P.
,
2009
, “
Adaptive Approximate Bayesian Computation
,”
Biometrika
,
96
(
4
), pp.
983
990
.10.1093/biomet/asp052
21.
Toni
,
T.
,
Welch
,
D.
,
Strelkowa
,
N.
,
Ipsen
,
A.
, and
Stumpf
,
M. P.
,
2009
, “
Approximate Bayesian Computation Scheme for Parameter Inference and Model Selection in Dynamical Systems
,”
J. R. Soc. Interface
,
6
(
31
), pp.
187
202
.10.1098/rsif.2008.0172
22.
Toni
,
T.
, and
Stumpf
,
M. P.
,
2010
, “
Simulation-Based Model Selection for Dynamical Systems in Systems and Population Biology
,”
Bioinformatics
,
26
(
1
), pp.
104
110
.10.1093/bioinformatics/btp619
23.
Barnes
,
C. P.
,
Silk
,
D.
, and
Stumpf
,
M. P.
,
2011
, “
Bayesian Design Strategies for Synthetic Biology
,”
Interface Focus
,
1
(
6
), pp.
895
908
.10.1098/rsfs.2011.0056
24.
Turner
,
B. M.
, and
Van Zandt
,
T.
,
2012
, “
A Tutorial on Approximate Bayesian Computation
,”
J. Math. Psychol.
,
56
(
2
), pp.
69
85
.10.1016/j.jmp.2012.02.005
25.
Hartig
,
F.
,
Calabrese
,
J. M.
,
Reineking
,
B.
,
Wiegand
,
T.
, and
Huth
,
A.
,
2011
, “
Statistical Inference for Stochastic Simulation Models—Theory and Application
,”
Ecol. Lett.
,
14
(
8
), pp.
816
827
.10.1111/j.1461-0248.2011.01640.x
26.
Beaumont
,
M. A.
,
2010
, “
Approximate Bayesian Computation in Evolution and Ecology
,”
Annu. Rev. Ecol., Evol., Syst.
,
41
(
1
), pp.
379
406
.10.1146/annurev-ecolsys-102209-144621
27.
Drovandi
,
C. C.
, and
Pettitt
,
A. N.
,
2011
, “
Estimation of Parameters for Macroparasite Population Evolution Using Approximate Bayesian Computation
,”
Biometrics
,
67
(
1
), pp.
225
233
.10.1111/j.1541-0420.2010.01410.x
28.
Wilkinson
,
R. D.
,
2013
, “
Approximate Bayesian Computation (ABC) Gives Exact Results Under the Assumption of Model Error
,”
Stat. Appl. Genet. Mol. Biol.
,
12
(
2
), pp.
129
141
.10.1515/sagmb-2013-0010
29.
Abdessalem
,
A. B.
,
Dervilis
,
N.
,
Wagg
,
D.
, and
Worden
,
K.
,
2018
, “
Model Selection and Parameter Estimation in Structural Dynamics Using Approximate Bayesian Computation
,”
Mech. Syst. Signal Process.
,
99
, pp.
306
325
.10.1016/j.ymssp.2017.06.017
30.
Chiachio
,
M.
,
Beck
,
J. L.
,
Chiachio
,
J.
, and
Rus
,
G.
,
2014
, “
Approximate Bayesian Computation by Subset Simulation
,”
SIAM J. Sci. Comput.
,
36
(
3
), pp.
A1339
A1358
.10.1137/130932831
31.
Weyant
,
A.
,
Schafer
,
C.
, and
Wood-Vasey
,
W. M.
,
2013
, “
Likelihood-Free Cosmological Inference With Type Ia Supernovae: Approximate Bayesian Computation for a Complete Treatment of Uncertainty
,”
Astrophys. J.
,
764
(
2
), p.
116
.10.1088/0004-637X/764/2/116
32.
Akeret
,
J.
,
Refregier
,
A.
,
Amara
,
A.
,
Seehars
,
S.
, and
Hasner
,
C.
,
2015
, “
Approximate Bayesian Computation for Forward Modeling in Cosmology
,”
J. Cosmol. Astropart. Phys.
,
2015
(
08
), p.
43
.10.1088/1475-7516/2015/08/043
33.
Vrugt
,
J. A.
, and
Sadegh
,
M.
,
2013
, “
Toward Diagnostic Model Calibration and Evaluation: Approximate Bayesian Computation
,”
Water Resour. Res.
,
49
(
7
), pp.
4335
4345
.10.1002/wrcr.20354
34.
Jasra
,
A.
,
Singh
,
S. S.
,
Martin
,
J. S.
, and
McCoy
,
E.
,
2012
, “
Filtering Via Approximate Bayesian Computation
,”
Stat. Comput.
,
22
(
6
), pp.
1223
1237
.10.1007/s11222-010-9185-0
35.
Marjoram
,
P.
,
Molitor
,
J.
,
Plagnol
,
V.
, and
Tavaré
,
S.
,
2003
, “
Markov Chain Monte Carlo Without Likelihoods
,”
Proc. Natl. Acad. Sci.
,
100
(
26
), pp.
15324
15328
.10.1073/pnas.0306899100
36.
Liu
,
J. S.
,
2008
,
Monte Carlo Strategies in Scientific Computing
,
Springer Science & Business Media
,
New York
.
37.
Andrieu
,
C.
,
De Freitas
,
N.
,
Doucet
,
A.
, and
Jordan
,
M. I.
,
2003
, “
An Introduction to MCMC for Machine Learning
,”
Mach. Learn.
,
50
(
1/2
), pp.
5
43
.10.1023/A:1020281327116
38.
Brooks
,
S.
,
Gelman
,
A.
,
Jones
,
G.
and
Meng
,
X. L.
, eds.,
2011
,
Handbook of Markov Chain Monte Carlo
,
CRC Press
,
Florida, FL
.
39.
Lu
,
D.
,
Pandey
,
M. D.
, and
Jyrkama
,
M. I.
,
2012
, “
Probabilistic Estimation of Flow-Accelerated Corrosion Rate at the Welded Joints of the Nuclear Piping System
,”
ASME
Paper No. PVP2012-78756.10.1115/PVP2012-78756
40.
Pandey
,
M. D.
, and
Lu
,
D.
,
2013
, “
Estimation of Parameters of Degradation Growth Rate Distribution From Noisy Measurement Data
,”
Struct. Saf.
,
43
, pp.
60
69
.10.1016/j.strusafe.2013.02.002
41.
Lu
,
D.
,
2012
, “
Estimation of Stochastic Degradation Models Using Uncertain Inspection Data
,” Ph.D. thesis, University of Waterloo, Waterloo, ON, Canada.
42.
Kass
,
R. E.
, and
Wasserman
,
L.
,
1996
, “
Formal Rules for Selecting Prior Distributions: A Review and Annotated Bibliography
,”
J. Am. Stat. Assoc.
,
435
, pp.
1343
1370
.10.1080/01621459.1996.10477003
You do not currently have access to this content.