We have calculated the gamma and X-ray shielding parameters such as mass attenuation coefficient, half value layer (HVL), tenth value layer (TVL), specific gamma ray constant, effective atomic number, and buildup factors in various steels. By studying these X-ray and gamma interaction parameters, we have selected the best steel which can be used for the X-ray and gamma shielding material. The steel type 20Mo-4 is having higher values of mass attenuation coefficient, specific gamma ray constant, effective atomic number, and buildup factor and smaller values of HVL and TVL. A detail analysis of X-ray/gamma interaction in the different steels reveals that the steel type (S15) 20Mo-4 is good absorption of both X-ray/gamma radiations.

References

References
1.
Akkurt
,
I.
,
2009
, “
Effective Atomic and Electron Numbers of Some Steels at Different Energies
,”
Ann. Nucl. Energy
,
36
(
11–12
), pp.
1702
1705
.
2.
Singh
,
V. P.
, and
Badiger
,
N. M.
,
2013
, “
Study of Mass Attenuation Coefficients, Effective Atomic Numbers and Electron Densities of Carbon Steel and Stainless Steels
,”
Radioprotection
,
48
, pp.
431
443
.
3.
Singh
,
V. P.
,
Medhat
,
M. E.
, and
Shirmardi
,
S. P.
,
2015
, “
Comparative Studies on Shielding Properties of Some Steel Steels Using Geant4, MCNP, WinXCOM and Experimental Results
,”
Radiat. Phys. Chem.
,
106
, pp.
255
260
.
4.
Medhat
,
M. E.
, and
Wang
,
Y.
,
2015
, “
Investigation on Radiation Shielding Parameters of Oxide Dispersion Strengthened Steels Used in High Temperature Nuclear Reactor Applications
,”
Ann. Nucl. Energy
,
80
, pp.
365
370
.
5.
Eissa
,
M. M.
,
El-Kameesy
,
S. U.
,
El-Fiki
,
S. A.
,
Ghali
,
S. N.
,
El Shazly
,
R. M.
, and
Saeed
,
A.
,
2016
, “
Attenuation Capability of Low Activation-Modified High Manganese Austenitic Stainless Steel for Fusion Reactor System
,”
Fusion Eng. Des.
,
112
, pp.
130
135
.
6.
Manjunatha
,
H. C.
,
2015
, “
Influence of Gamma Irradiation on Conductivity of YBa2Cu3O7
,”
Radiat. Phys. Chem.
,
113
, pp.
24
27
.
7.
Seenappa
,
L.
,
Manjunatha
,
H. C.
,
Chandrika
,
B. M.
, and
Chikka
,
H.
,
2017
, “
A Study of Shielding Properties of X-Ray and Gamma in Barium Compounds
,”
J. Radiat. Prot. Res.
,
42
(
1
), pp.
26
32
.
8.
Manjunatha
,
H. C.
,
2017
, “
A Study of Gamma Attenuation Parameters in Poly Methyl Methacrylate and Kapton
,”
Radiat. Phys. Chem.
,
137
, pp.
254
259
.
9.
Manjunatha
,
H. C.
,
Seenappa
,
L.
,
Chandrika
,
B. M.
, and
Hanumantharayappa
,
C.
,
2017
, “
A Study of Photon Interaction Parameters in Barium Compounds
,”
Ann. Nucl. Energy
,
109
, pp.
310
317
.
10.
Rudraswamy
,
B.
,
Dhananjaya
,
N.
, and
Manjunatha
,
H. C.
,
2010
, “
Measurement of Absorbed Dose Rate of Gamma Radiation for Lead Compounds
,”
Nucl. Instrum. Methods Phys. Res., Sect. A.
,
619
(
1–3
), pp.
171
173
.
11.
Manjunatha
,
H. C.
,
Chandrika
,
B. M.
,
Seenappa
,
L.
, and
Hanumantharayappa
,
C.
,
2016
, “
Study of Gamma Attenuation Properties of Tungsten Copper Steels
,”
Int. J. Nucl. Energy Sci. Technol.
,
10
(
4
), pp.
356
368
.
12.
Manjunatha
,
H. C.
, and
Rudraswamy
,
B.
,
2013
, “
Study of Effective Atomic Number and Elect Ron Density for Tissues From Human Organs in the Energy Range of 1 keV–100 GeV
,”
Health Phys.
,
104
(
2
), pp.
158
162
.
13.
Suresh
,
K. C.
,
Manjunatha
,
H. C.
, and
Rudraswamy
,
B.
,
2008
, “
Study of Zeff for DNA, RNA and Retina by Numerical Methods
,”
Radiat. Protect. Dosim.
,
128
(
3
), pp.
294
298
.
14.
Manjunatha
,
H. C.
, and
Rudraswamy
,
B.
,
2011
, “
Computation of CT-Number and Zeff in Teeth
,”
Health Phys.
,
100
(
5
), pp.
S92
S99
.
15.
Manjunatha
,
H. C.
,
2014
, “
A Study of Photon Interaction Parameters in Lung Tissue Substitutes
,”
J. Med. Phys.
,
39
(
2
), p.
112
.
16.
Seenappa
,
L.
,
Manjunatha
,
H. C.
,
Sowmya
,
N.
, and
Sridhar
,
K. N.
,
2018
, “
A Study of Energy Absorption Buildup Factors of Some Steels
,”
Radiat. Prot. Environ.
,
41
, pp.
123
127
.
17.
Manjunatha
,
H. C.
,
Seenappa
,
L.
,
Sridhar
,
K. N.
,
Sowmya
,
N.
, and
Hanumantharayappa
,
C.
,
2017
, “
Photon Interaction Parameters of Different Tissues of Human Organs
,”
Def. Life Sci. J.
,
2
(
3
), pp.
358
362
.
18.
Manjunatha
,
H. C.
,
2017
, “
A Study of Gamma Dosimetric Parameters in Some Skeletal Muscle Relaxants
,”
Pramana-J. Phys.
,
89
, p.
42
.
19.
Seenappa
,
L.
,
Manjunatha
,
H. C.
,
Sridhar
,
K. N.
, and
Hanumantharayappa
,
C.
,
2017
, “
Semi Empirical Formula for Exposure Buildup Factors
,”
Radiat. Eff. Defects Solids
,
172
(
9–10
), pp.
790
798
.
20.
Manjunatha
,
H. C.
,
Seenappa
,
L.
,
Sowmya
,
N.
, and
Hanumantharayappa
,
C.
,
2018
, “
Study of Gamma/X-Ray Interaction in Kondo Insulators
,”
X-Ray Spectrom.
,
47
, pp.
34
45
.
21.
Manjunatha
,
H. C.
, and
Sridhar
,
K. N.
,
2018
, “
A Simple Empirical Formula for Neutron Scattering Lengths and Cross Sections
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
,
877
, pp.
349
354
.
22.
Seenappa
,
L.
,
Manjunatha
,
H. C.
,
Sridhar
,
K. N.
, and
Hanumantharayappa
,
C.
,
2018
, “
Gamma and X-Ray Radiation Compatibility of Ti-Ta-Hf-Zr Steels Used for Coronary Stent Applications
,”
Nucl. Sci. Technol.
,
29
, p.
3
.
23.
Seenappa
,
L.
,
Manjunatha
,
H. C.
,
Sridhar
,
K. N.
, and
Hanumantharayappa
,
C.
,
2018
, “
Gamma, X-Ray and Neutron Shielding Properties of Polymer Concretes
,”
Indian J. Pure Appl. Phys.
,
56
(
5
), pp.
383
391
.http://op.niscair.res.in/index.php/IJPAP/article/view/18219
24.
Seenappa
,
L.
,
Manjunatha
,
H. C.
,
Sridhar
,
K. N.
, and
Hanumantharayappa
,
C.
,
2017
, “
Study of Gamma/X-Ray Interaction in Some Diodes and Transistors
,”
Int. J. Nucl. Energy Sci. Technol.
,
11
(
4
), pp.
377
389
.
25.
Manjunatha
,
H. C.
,
Chandrika
,
B. M.
,
Rudraswamy
,
B.
, and
Sankarshan
,
B. M.
,
2012
, “
Beta Bremsstrahlung Dose in Concrete Shielding
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
,
674
, pp.
74
78
.
26.
Manjunatha
,
H. C.
, and
Rudraswamy
,
B.
,
2012
, “
Energy Absorption and Exposure Build-Up Factors in Hydroxyapatite
,”
Radiat. Meas.
,
47
(
5
), pp.
364
370
.
27.
Manjunatha
,
H. C.
, and
Rudraswamy
,
B.
,
2011
, “
Computation of Exposure Build-Up Factors in Teeth
,”
Radiat. Phys. Chem.
,
80
(
1
), pp.
4
21
.
28.
Manjunatha
,
H. C.
, and
Rudraswamy
,
B.
,
2012
, “
Energy Absorption Build-Up Factors in Teeth
,”
J. Radioanal. Nucl. Chem.
,
294
(
2
), pp.
251
260
.
29.
Singh
,
R.
,
Singh
,
S.
,
Singh
,
G.
, and
Thind
,
K. S.
,
2017
, “
Gamma Radiation Shielding Properties of Steel and Iron Slags
,”
New J. Glass Ceram.
,
7
(
1
), pp.
1
11
.
30.
Calik
,
A.
,
Akbunar
,
S.
,
Ucar
,
N.
,
Yilmaz
,
N.
,
Karakas
,
S.
, and
Akkurt
,
I.
,
2014
, “
A Comparison of Radiation Shielding of Stainless Steel With Different Magnetic Properties
,”
Nucl. Technol. Radiat. Protec.
,
29
(
3
), pp.
186
189
.
31.
Buyuk
,
B.
,
2015
, “
Gamma Attenuation Behavior of Some Stainless and Boron Steels
,”
Acta Phys. Pol., A
,
127
(
4
), pp.
1342
1345
.
32.
Demir
,
E.
,
Karabas
,
M.
,
Sonmez
,
S.
,
Tugrul
,
A. B.
,
Ovecoglu
,
M. L.
, and
Buyuk
,
B.
,
2017
, “
Comparison of Radiation Properties of Tungsten and Additive Metal Coatings on 321 Stainless Steel Substrate
,”
Acta Phys. Pol., A
,
131
(
1
), pp.
71
73
.
33.
Gerward
,
L.
,
Guilbert
,
N.
,
Jensen
,
K. B.
, and
Levring
,
H.
,
2004
, “
WinXCom—A Program for Calculating X-Ray Attenuation Coefficients
,”
Radiat. Phys. Chem.
,
71
(
3–4
), pp.
653
654
.
34.
ANS
,
1991
, “
Gamma-Ray Attenuation Coefficients and Buildup Factor for Engineering Materials ANSI/ANS 6.4.3
,” Oak Ridge National Laboratory, Oak Ridge, TN.
35.
Manjunatha
,
H. C.
,
Seenappa
,
L.
,
Sridhar
,
K. N.
,
Sowmya
,
N.
, and
Hanumantharayappa
,
C.
,
2017
, “
Empirical Formulae for Mass Attenuation and Energy Absorption Coefficients From 1 keV to 20 MeV
,”
Eur. Phys. J. D
,
71
, p.
235
.
36.
Shenoy
,
A. V.
,
Saini
,
D. R.
, and
Nadkarni
,
V. M.
,
1984
, “
Melt Rheology of Polymer Blends From Melt Flow Index
,”
Int. J. Polym. Mater. Polym. Biomater.
,
10
(
3
), p.
213
.
37.
Saini
,
D. R.
,
Shenoy
,
A. V.
, and
Nadkarni
,
V. M.
,
1984
, “
Dynamic Mechanical Properties of Highly Loaded Ferrite-Filled Thermoplastic Elastomers
,”
J. Appl. Polym. Sci.
,
29
(
12
), p.
4123
.
38.
Mcguire
,
M.
,
2008
,
Stainless Steels for Design Engineers
,
ASM International
,
Materials Park, OH
.
39.
Pioro
,
I.
, and
Duffey
,
R. B.
,
2007
,
Heat Transfer and Hydraulic Resistance at Supercritical Pressures in Power Engineering Applications
,
ASME Press
,
New York
, p.
334
.
40.
Pioro
,
I. L.
, ed.,
2016
,
Handbook of Generation IV Nuclear Reactors
,
Elsevier—Woodhead Publishing (WP)
,
Duxford, UK
, p.
940
.
41.
Pioro
,
I.
,
Editors: Krivit
,
S. B.
,
Lehr
,
J. H.
, and
Kingery
,
T. B.
,
2011
, “
The Potential Use of Supercritical Water-Cooling in Nuclear Reactors
,”
Nuclear Energy Encyclopedia: Science, Technology, and Applications
,
Wiley
,
Hoboken, NJ
, pp.
309
347
.
42.
Pioro
,
I.
, and
Duffey
,
R.
,
2015
, “
Nuclear Power as a Basis for Future Electricity Generation
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
1
(
1
), p.
011001
.
43.
Pioro
,
I.
,
Mokry
,
S.
, and
Draper
,
S.
,
2011
, “
Specifics of Thermophysical Properties and Forced-Convective Heat Transfer at Critical and Supercritical Pressures
,”
Rev. Chem. Eng.
,
27
(
3–4
), pp.
191
214
.
44.
Pioro
,
I.
,
2010
, “
Heat-Transfer at Supercritical Pressures
,”
14th International Heat Transfer Conference (IHTC-14)
, Washington, DC, Aug. 7–13, Paper No.
23403
.http://digbib.ubka.uni-karlsruhe.de/volltexte/fzk/6609/6609.pdf
45.
Hubbell
,
J. H.
,
1982
, “
Photon Mass Attenuation and Energy-Absorption Coefficients
,”
Int. J. Appl. Radiat. Isot.
,
33
(
11
), pp.
1269
1290
.
You do not currently have access to this content.