Recuperator is one of the most important components in supercritical carbon dioxide (S-CO2) Brayton cycle, and the printed circuit heat exchanger (PCHE) has been considered as a promising candidate due to its high efficiency and compactness. The airfoil fin (AFF) PCHE has higher thermal-hydraulic performance than conventional zigzag channel PCHE. However, it also suffers from serious local flow resistance caused by the impact area. Two types of new slotted fins (SFs) based on AFFs including longitudinal slot fins (LSFs) and herringbone slot fins (HSFs) are proposed to release the effect of the impact area. The results show that both LSFs and HSFs can significantly reduce the flow resistance in the channel. Meanwhile, the SFs also show higher thermal performance due to the heat transfer area enhancement by the slots. The LSF channel can be considered as a promising candidate in some energy conversion systems due to its good hydraulic performance, while the HSF channel would behave more efficiently such as in refrigeration cycles due to its high thermal performance. Finally, the field synergy principle is employed to discuss the flow drag reduction in SF channels.

References

References
1.
Field
,
R. M.
,
2017
, “
AM600: A New Look at the Nuclear Steam Cycle
,”
Nucl. Eng. Technol.
,
49
(
3
), pp.
621
631
.
2.
Wang
,
K.
,
Li
,
M. J.
,
Guo
,
J. Q.
,
Li
,
P.
, and
Liu
,
Z. B.
,
2018
, “
A Systematic Comparison of Different S-CO2 Brayton Cycle Layouts Based on Multi-Objective Optimization for Applications in the Solar Power Tower System
,”
Appl. Energy
,
212
(
15
), pp.
109
121
.
3.
Yang
,
Y. P.
,
Wang
,
L. G.
,
Dong
,
C. Q.
,
Xu
,
G.
,
Morosuk
,
T.
, and
Tsatsaronis
,
G.
,
2013
, “
Comprehensive Exergy-Based Evaluation and Parametric Study of a Coal-Fired Ultra-Supercritical Power Plant
,”
Appl. Energy
,
112
, pp.
1087
1099
.
4.
Mecheri
,
M.
, and
Moullec
,
Y. L.
,
2016
, “
Supercritical CO2 Brayton Cycles for Coal-Fired Power Plants
,”
Energy
,
103
(
15
), pp.
758
771
.
5.
Xu
,
J.
,
Sun
,
E.
,
Li
,
M.
,
Liu
,
H.
, and
Zhu
,
B.
,
2018
, “
Key Issues and Solution Strategies for Supercritical Carbon Dioxide Coal Fired Power Plant
,”
Energy
,
157
(
15
), pp.
227
246
.
6.
Sun
,
E.
,
Xu
,
J.
,
Li
,
M.
,
Liu
,
G.
, and
Zhu
,
B.
,
2018
, “
Connected-Top-Bottom-Cycle to Cascade Utilize Flue Gas Heat for Supercritical Carbon Dioxide Coal Fired Power Plant
,”
Energy Convers. Manage.
,
172
(
15
), pp.
138
154
.
7.
Duffey
,
R. B.
, and
Pioro
,
I. L.
,
2007
, “
Experimental Heat Transfer to Carbon Dioxide at Supercritical Pressures
,”
Heat Transfer and Hydraulic Resistance at Supercritical Pressures in Power Engineering Applications
,
ASME Press
, New York, pp.
83
164
.
8.
Yang
,
C.
,
Xu
,
J.
,
Wang
,
X.
, and
Zhang
,
W.
,
2013
, “
Mixed Convective Flow and Heat Transfer of Supercritical CO2, in Circular Tubes at Various Inclination Angles
,”
Int. J. Heat Mass Transfer
,
64
(
5
), pp.
212
223
.
9.
Xu
,
J.
,
Yang
,
C.
,
Zhang
,
W.
, and
Sun
,
D.
,
2015
, “
Turbulent Convective Heat Transfer of CO2, in a Helical Tube at Near-Critical Pressure
,”
Int. J. Heat Mass Transfer
,
80
, pp.
748
758
.
10.
Fan
,
Y. H.
, and
Tang
,
G. H.
,
2018
, “
Numerical Investigation on Heat Transfer of Supercritical Carbon Dioxide in a Vertical Tube Under Circumferentially Non-Uniform Heating
,”
Appl. Therm. Eng.
,
138
(
25
), pp.
354
364
.
11.
Guo
,
J.
,
2016
, “
Design Analysis of Supercritical Carbon Dioxide Recuperator
,”
Appl. Energy
,
164
, pp.
21
27
.
12.
Guo
,
J.
, and
Huai
,
X.
,
2017
, “
Performance Analysis of Printed Circuit Heat Exchanger for Supercritical Carbon Dioxide
,”
ASME J. Heat Transfer
,
139
(
6
), p.
061801
.
13.
Chang
,
H. O.
,
Kim
,
E. S.
, and
Patterson
,
M.
,
2008
, “
Design Option of Heat Exchanger for the Next Generation Nuclear Plant
,”
Office Sci. Tech. Inf. Tech. Rep.
,
132
(
3
), pp.
697
707
.
14.
Li
,
Q.
,
Flamant
,
G.
,
Yuan
,
X.
,
Neveu
,
P.
, and
Luo
,
L.
,
2011
, “
Compact Heat Exchangers: A Review and Future Applications for a New Generation of High Temperature Solar Receivers
,”
Renewable Sustainable Energy Rev.
,
15
(
9
), pp.
4855
4875
.
15.
Ishizuka
,
T.
,
Kato
,
Y.
,
Muto
,
Y.
,
Nikitin
,
K.
,
Lam
,
N.
, and
Hashimoto
,
H.
,
2005
, “
Thermal-Hydraulic Characteristics of a Printed Circuit Heat Exchanger in a Supercritical CO2 Loop
,”
11th International Topical Meetings Nuclear Reactor Thermal–Hydraulics
, Gyeongju, Korea, Oct. 2–6, pp.
218
232
.
16.
Nikitin
,
K.
,
Kato
,
Y.
, and
Ngo
,
L.
,
2006
, “
Printed Circuit Heat Exchanger Thermal–Hydraulic Performance in Supercritical CO2, Experimental Loop
,”
Int. J. Refrig.
,
29
(
5
), pp.
807
814
.
17.
Lee
,
S. M.
, and
Kim
,
K. Y.
,
2012
, “
Optimization of Zigzag Flow Channels of a Printed Circuit Heat Exchanger for Nuclear Power Plant Application
,”
J. Nucl. Sci. Technol.
,
49
(
3
), pp.
343
351
.
18.
Kim
,
K. Y.
,
2014
, “
A Parametric Study of the Thermal-Hydraulic Performance of a Zigzag Printed Circuit Heat Exchanger
,”
Heat Transfer Eng.
,
35
(
13
), pp.
1192
1200
.
19.
Lee
,
S. M.
, and
Kim
,
K. Y.
,
2013
, “
Comparative Study on Performance of a Zigzag Printed Circuit Heat Exchanger With Various Channel Shapes and Configurations
,”
Heat Mass Transfer
,
49
(
7
), pp.
1021
1028
.
20.
Ma
,
T.
,
Li
,
L.
,
Xu
,
X. Y.
,
Chen
,
Y. T.
, and
Wang
,
Q. W.
,
2015
, “
Study on Local Thermal–Hydraulic Performance and Optimization of Zigzag-Type Printed Circuit Heat Exchanger at High Temperature
,”
Energy Convers. Manage.
,
104
, pp.
55
66
.
21.
Ngo
,
T. L.
,
Kato
,
Y.
,
Nikitin
,
K.
, and
Tsuzuki
,
N.
,
2006
, “
New Printed Circuit Heat Exchanger With S-Shaped Fins for Hot Water Supplier
,”
Exp. Therm. Fluid Sci.
,
30
(
8
), pp.
811
819
.
22.
Ngo
,
T. L.
,
Kato
,
Y.
,
Nikitin
,
K.
, and
Ishizuka
,
T.
,
2007
, “
Heat Transfer and Pressure Drop Correlations of Microchannel Heat Exchangers With S-Shaped and Zigzag Fins for Carbon Dioxide Cycles
,”
Exp. Therm. Fluid Sci.
,
32
(
2
), pp.
560
570
.
23.
Tsuzuki
,
N.
,
Kato
,
Y.
, and
Ishiduka
,
T.
,
2007
, “
High Performance Printed Circuit Heat Exchanger
,”
Appl. Therm. Eng.
,
27
(
10
), pp.
1702
1707
.
24.
Kim
,
D. E.
,
Kim
,
M. H.
,
Cha
,
J. E.
, and
Kim
,
S. O.
,
2008
, “
Numerical Investigation on Thermal–Hydraulic Performance of New Printed Circuit Heat Exchanger Model
,”
Nucl. Eng. Des.
,
238
(
12
), pp.
3269
3276
.
25.
Kim
,
T. H.
,
Jin
,
G. K.
,
Yoon
,
S. H.
,
Park
,
H. S.
,
Kim
,
M. H.
, and
Cha
,
J. E.
,
2015
, “
Numerical Analysis of Air-Foil Shaped Fin Performance in Printed Circuit Heat Exchanger in a Supercritical Carbon Dioxide Power Cycle
,”
Nucl. Eng. Des.
,
288
, pp.
110
118
.
26.
Xu
,
X.
,
Ma
,
T.
,
Li
,
L.
,
Zeng
,
M.
,
Chen
,
Y.
,
Huang
,
Y.
, and
Wang
,
Q.
,
2014
, “
Optimization of Fin Arrangement and Channel Configuration in an Airfoil Fin PCHE for Supercritical CO2 Cycle
,”
Appl. Therm. Eng.
,
70
(
1
), pp.
867
875
.
27.
Chen
,
F.
,
Zhang
,
L.
,
Huai
,
X.
,
Li
,
J.
,
Zhang
,
H.
, and
Liu
,
Z.
,
2017
, “
Comprehensive Performance Comparison of Airfoil Fin PCHEs With NACA 00XX Series Airfoil
,”
Nucl. Eng. Des.
,
315
, pp.
42
50
.
28.
Xu
,
X. Y.
,
Wang
,
Q. W.
,
Li
,
L.
,
Ekkad
,
S.
, and
Ma
,
T.
,
2015
, “
Thermal-Hydraulic Performance of Different Discontinuous Fins Used in a Printed Circuit Heat Exchanger for Supercritical CO2
,”
Numer. Heat Transfer
,
68
(
10
), pp.
1067
1086
.
29.
Cui
,
X.
,
Guo
,
J.
,
Huai
,
X.
,
Cheng
,
K.
,
Zhang
,
H.
, and
Xiang
,
M.
,
2018
, “
Numerical Study on Novel Airfoil Fins for Printed Circuit Heat Exchanger Using Supercritical CO2
,”
Int. J. Heat Mass Transfer
,
121
, pp.
354
366
.
30.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
31.
Lam
,
C. K. G.
, and
Bremhorst
,
K.
,
1981
, “
A Modified Form of the k-Epsilon Model for Predicting Wall Turbulence
,”
ASME J. Fluids Eng.
,
1034
(
3
), pp.
456
460
.
32.
Qiu
,
Y.
,
Li
,
M. J.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2017
, “
Thermal Performance Analysis of a Parabolic Trough Solar Collector Using Supercritical CO2 as Heat Transfer Fluid Under Non-Uniform Solar Flux
,”
Appl. Therm. Eng.
,
115
(
25
), pp.
1255
1265
.
33.
He
,
S.
,
Jiang
,
P. X.
,
Xu
,
Y. J.
,
Shi
,
R. F.
,
Kim
,
W. S.
, and
Jackson
,
J. D.
,
2005
, “
A Computational Study of Convection Heat Transfer to CO2 at Supercritical Pressures in a Vertical Mini Tube
,”
Int. J. Therm. Sci.
,
44
(
6
), pp.
521
530
.
34.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2007
, “
Reference Fluid Thermodynamic and Transport Properties (REFPROP), Version8.0 in NIST Standard Reference Database 23
,” National Institute of Standard and Technology, Gaithersburg, MD.
35.
Fan
,
J. F.
,
Ding
,
W. K.
,
Zhang
,
J. F.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2009
, “
A Performance Evaluation Plot of Enhanced Heat Transfer Techniques Oriented for Energy-Saving
,”
Int. J. Heat Mass Transfer
,
52
(
1–2
), pp.
33
44
.
36.
Gee
,
D. L.
, and
Webb
,
R. L.
,
1980
, “
Forced Convection Heat Transfer in Helically Rib-Roughened Tubes
,”
Int. J. Heat Mass Transfer
,
23
(
8
), pp.
1127
1136
.
37.
Guo
,
Z. Y.
,
Li
,
D. Y.
, and
Wang
,
B. X.
,
1998
, “
A Novel Concept for Convective Heat Transfer Enhancement
,”
Int. J. Heat Mass Transfer
,
41
(
14
), pp.
2221
2225
.
38.
Liu
,
W.
,
Liu
,
Z. C.
, and
Guo
,
Z. Y.
,
2009
, “
Physical Quantity Synergy in Laminar Flow Field of Convective Heat Transfer and Analysis of Heat Transfer Enhancement
,”
Chin. Sci. Bull.
,
54
(
19
), pp.
3579
3586
.
39.
Bi
,
C.
,
Tang
,
G. H.
, and
Tao
,
W. Q.
,
2013
, “
Heat Transfer Enhancement in Mini-Channel Heat Sinks With Dimples and Cylindrical Grooves
,”
Appl. Therm. Eng.
,
55
(
1–2
), pp.
121
132
.
40.
Dang
,
C.
, and
Hihara
,
E.
,
2004
, “
In-Tube Cooling Heat Transfer of Supercritical Carbon Dioxide—Part 1: Experimental Measurement
,”
Int. J. Refrig.
,
27
(
7
), pp.
736
747
.
41.
Nakagawa
,
M.
,
Marasigan
,
A. R.
, and
Matsukawa
,
T.
,
2011
, “
Experimental Analysis on the Effect of Internal Heat Exchanger in Transcritical CO2 Refrigeration Cycle With Two-Phase Ejector
,”
Int. J. Refrig.
,
34
(
7
), pp.
1577
1586
.
You do not currently have access to this content.