Abstract

Based on the design of the supercritical carbon dioxide (SCO2) centripetal compressor, this paper adopts the orthogonal design test method to optimize the pear-shaped volute, designs the front guide vane with the third-order Bezier curve, and designs the outlet by the equal section method. The numerical simulation calculation and analysis of the design conditions and variable conditions of the SCO2 centripetal compressor are carried out. The results at design conditions show that the isentropic efficiency is 92%, the pressure ratio is 1.21, and the mass flow rate is 195.9 kg/s, which is close to the thermal design and level simulation results; the results of variable conditions show that the efficiency of the SCO2 centripetal compressor-flow and pressure ratio-flow characteristic line is similar to that of multistage axial flow compressor. The supercritical carbon dioxide centripetal compressor designed in this paper meets the design requirements, and its feasibility is proved through numerical simulation.

References

References
1.
Ming
,
Y.
,
2011
,
Research on Multi-Stage Axial Compressor Design and Aerodynamic Performance
,
Harbin Engineering University
,
Harbin, China
, p.
77
(in Chinese).
2.
Mansour
,
M.
,
Hingorani
,
S.
, and
Dong
,
Y.
,
2001
, “
A New Multistage Axial Compressor Designed With the APNASA Multistage CFD Code: Part 1—Code Calibration
,”
ASME
Paper No. 2001-GT-0349.
3.
Wang
,
W.
,
2009
,
Numerical Study of Three-Dimensional Flow Field of Centrifugal Compressor
,
Harbin Engineering University
,
Harbin, China
, p.
96
(in Chinese).
4.
Hathaway
,
M. D.
,
Chriss
,
R. M.
,
Wood
,
J. R.
, and
Strazisar
,
A. J.
,
1993
, “
Experimental and Computational Investigation of the NASA Low-Speed Centrifugal Compressor Flow Field
,”
ASME J. Turbomach.
,
115
(
3
), pp.
527
541
.
5.
Wang
,
Y.
,
Wang
,
K.
,
Tong
,
Z.
,
Lin
,
F.
,
Nie
,
C.
, and
Abraham
,
E.
,
2013
, “
Design and Optimization of a Single Stage Centrifugal Compressor for a Solar Dish-Brayton System
,”
J. Therm. Sci.
,
22
(
5
), pp.
404
412
.
6.
Crowe
,
P. L.
,
1927
, “
Centripetal Compressor
,” U.S. Patent No. 1,644,565.
7.
Pavlecka
,
V. H.
,
1957
, “
Gas Turbine Power Plant With a Supersonic Centripetal Flow Compressor and a Centrifugal Flow Turbine
,” U.S. Patent No. 2,804,747.
8.
Pavlecka
,
V. H.
,
1960
, “
Supersonic Centripetal Compressor
,” U.S. Patent No. 2,949,224.
9.
Pavlecka
,
V. H.
,
1962
, “
Methods of Compressing Fluids With Centripetal Compressors
,” U.S. Patent No. 3,040,971.
10.
Shan
,
P.
, and
Wang
,
J.
,
2012
, “
Feasibility Study of Centripetal Compressor
,”
China Engineering Thermophysics Society Thermal Machine Aerodynamics Thermodynamics Annual Conference, Harbin, China, Sept. 27–28, Paper No.
122009 (in Chinese).
11.
Li
,
Y.
,
Tan
,
X.
, and
Huang
,
D.
,
2018
, “
Numerical Simulation and Optimization of Centrifugal Compressor
,”
J. Eng. Thermophys.
,
39
(
1
), pp.
82
86
(in Chinese).
12.
U.S. DOE
,
2002
, “
A Technology Roadmap for Generation IV Nuclear Energy Systems
,” U. S. DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum, Technical Report No.
GIF-002-00
https://www.gen-4.org/gif/jcms/c_40481/technology-roadmap.
13.
David
,
C. W.
,
2007
, “
Optimizing Economy of Scale for the STAR Energy Supply Architecture
,”
IAEA Second CRP Meeting on Small Reactors Without Onsite Refueling
, Miami, FL, June 4–8.
14.
Petr
,
V.
, and
Kolovratnik
,
M.
,
1997
, “
A Study on Application of a Closed Cycle CO2 Gas Turbine in Power Engineering
,” Department of Fluid Dynamics and Power Engineering, Division of Power Engineering, Czech Technical University in Prague, Prague, Czech Republic, Report No. Z-523/97.
15.
Wright
,
S. A.
,
Pandel
,
R. F.
,
Vernon
,
M. E.
,
Rocha
,
G. E.
, and
Pichard
,
P. S.
,
2010
, “
Operation and Analysis of a Supercritical CO2 Brayton Cycle
,”
Sandia National Laboratories
,
Albuquerque, NM
, Report No.
SAND2010-0171
.https://prod-ng.sandia.gov/techlib-noauth/access-control.cgi/2010/100171.pdf
16.
Wright
,
S. A.
,
Conboy
,
T. M.
,
Parma
,
E. J.
,
Lewis
,
T. G.
, and
Rochau
,
G. A.
,
2011
, “
Summary of the Sandia Supercritical CO2 Development Program
,”
Chin. J. Chem.
,
21
(
12
), pp.
1562
1564
.
17.
Noall
,
J. S.
, and
Pasch
,
J. J.
,
2014
, “
Achievable Efficiency and Stability of Supercritical CO2 Compression Systems
,”
Supercritical CO2 Power Cycle Symposium, Pittsburgh, PA
, Sept. 9–10, Paper No.
10
.https://www.barber-nichols.com/sites/default/files/wysiwyg/images/achievable_efficiency_stability_supercritical_co2_compression_systems.pdf
18.
Utamura
,
M.
,
Fukuda
,
T.
, and
Aritomi
,
M.
,
2012
, “
Aerodynamic Characteristics of a Centrifugal Compressor Working in Supercritical Carbon Dioxide
,”
Energy Procedia
,
14
, pp.
1149
1155
.
19.
Zheng
,
K.
,
Zhao
,
H.
, and
Feng
,
Z.
,
2015
, “
Analysis of Internal Flow Characteristics of Supercritical Carbon Dioxide Centrifugal Compressor
,”
J. Eng. Thermophys.
,
36
(
5
), pp.
985
988 (
in Chinese).
20.
Yan
,
X.
,
2011
,
Performance Evaluation of Micro Gas Turbine Centrifugal Compressor and Optimization Design of Exhaust Volute
,
Shanghai Jiaotong University
,
Shanghai, China
, p.
137
(in Chinese).
21.
Pan
,
D.
,
Ding
,
W.
, and
Xu
,
Y.
,
2002
, “
Theoretical Analysis and Experimental Research on Design Method of Spiral Shell Shape of Centrifugal Fan
,”
Fluid Mach.
,
30
(
4
), pp.
4
11 (
in Chinese).
22.
Liu
,
R.
,
Zhang
,
Y.
,
Wen
,
C.
, and
Tang
,
J.
,
2010
, “
Research on Orthogonal Experimental Design and Analysis Methods
,”
Lab. Technol. Manage.
,
27
(
9
), pp.
52
55 (
in Chinese).
23.
Tan
,
X.
,
Li
,
H.
,
Song
,
Y.
, and
Huang
,
D.
,
2017
, “
Design and Analysis of Flow-Through Components of Centrifugal Turbines
,”
J. Eng. Thermophys.
,
38
(
4
), pp.
767
775 (
in Chinese).
24.
Anderson
,
J.
,
Dick
,
E.
,
Degres
,
G.
,
Grundmann
,
R.
,
Degroote
,
J.
, and
Vierendeels
,
J.
,
2002
,
Computational Fluid Dynamics, National Air and Space Museum
,
Smithsonian Institution
,
Washington, DC
, p.
333
.
25.
Song
,
Y.
,
Sun
,
X.
, and
Huang
,
D.
,
2017
, “
Preliminary Design and Performance Analysis of a Centrifugal Turbine for Organic Rankine Cycle (ORC) Applications
,”
Energy
,
140
(
Pt. 1
), pp.
1239
1251
.
You do not currently have access to this content.