This paper presents the modeling approach of a multipurpose simulation tool called gas turbine Arekret-cycle simulation (GT-ACYSS); which can be utilized for the simulation of steady-state and pseudo transient performance of closed-cycle gas turbine plants. The tool analyzes the design point performance as a function of component design and performance map characteristics predicted based on multifluid map scaling technique. The off-design point is analyzed as a function of design point performance, plant control settings, and a wide array of other off-design conditions. GT-ACYSS can be a useful educational tool since it allows the student to monitor gas path properties throughout the cycle without laborious calculations. It allows the user to have flexibility in the selection of four different working fluids, and the ability to simulate various single-shaft closed-cycle configurations, as well as the ability to carry out preliminary component sizing of the plant. The modeling approach described in this paper has been verified with case studies and the trends shown appeared to be reasonable when compared with reference data in the open literature, hence, can be utilized to perform independent analyses of any referenced single-shaft closed-cycle gas turbine plants. The results of case studies presented herein demonstrated that the multifluid scaling method of components and the algorithm of the steady-state analysis were in good agreement for predicting cycle performance parameters (such as efficiency and output power) with mean deviations from referenced plant data ranging between 0.1% and 1% over wide array of operations.

References

1.
Osigwe
,
E. O.
,
Li
,
Y. G.
,
Sampath
,
S.
,
Jombo
,
G.
, and
Indarti
,
D.
,
2017
, “
Integrated Gas Turbine System Diagnostics: Components and Sensor Fault Quantification Using Artificial Neural Network
,”
23rd ISABE Conference Proceedings
, Manchester, UK, Sept. 3–8, Paper No.
ISABE-2017-2605
.https://www.researchgate.net/publication/319645027_Integrated_Gas_Turbine_System_Diagnostics_Components_and_Sensor_Faults_Quantification_using_Artificial_Neural_Network
2.
Nikolaidis
,
T.
,
2015
,
TURBOMATCH Scheme for Aero/Industrial Gas Turbine Engine, Program Manual
,
Cranfield University
,
Cranfield, UK
, p.
108
.
3.
NATO RTO
,
2007
, “
Performance Prediction and Simulation of Gas Turbine Engine Operation for Aircraft, Marine, Vehicular, and Power Generation
,” NATO Research and Technology Organisation, Paris, France, Report No. RTO-TR-044, Accessed Mar. 11, 2018, https://apps.dtic.mil/dtic/tr/fulltext/u2/a466188.pdf
4.
Visser
,
W. P. J.
, and
Broomhead
,
M. J.
,
2000
, “
GSP, a Generic Object-Oriented Gas Turbine Simulation Environment
,”
ASME
Paper No. 2000-GT-0002.
5.
Kurzke
,
J.
,
1995
, “
Advanced User-Friendly Gas Turbine Performance Calculations on a Personal Computer
,”
ASME
Paper No. 95-GT-147.
6.
Jordan
,
F. D.
,
1969
, “
An Analog Computer Simulation of a Closed Brayton Cycle System
,”
ASME
Paper No. 69-GT-50.
7.
Shapiro
,
S. R.
, and
Caddy
,
M. J.
,
1974
, “
NEPCOMP—The Navy Engine Performance Program
,”
ASME
Paper No. 74-GT-83.
8.
Sankar
,
B.
,
Shah
,
B.
, and
Thennavarajan
,
S.
,
2013
, “
On Gas Turbine Simulation Model Development
,”
National Conference on Condition Monitoring
, Bangalore, India, Oct. 4–5, Paper No.
NCCM-2013-12
.https://www.researchgate.net/publication/257410476_On_Gas_Turbine_Simulation_Model_Development
9.
Olumayegun
,
O.
,
Wang
,
M.
, and
Kelsall
,
G.
,
2016
, “
Closed-Cycle Gas Turbine for Power Generation: A State-of-the-Art Review
,”
Fuel
,
180
, pp.
694
717
.
10.
Vavra
,
M. E.
,
1965
, “
A Graphical Solution to Matching Problem in Closed-Cycle Gas Turbine Plant
,” USA Naval Post Graduate School, Monterey, CA, accessed May 14, 2017, https://archive.org/details/graphicalsolutio45vavr
11.
Dostal
,
V.
,
2004
, “
A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors
,” Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge, MA.
12.
Dyreby
,
J. J.
,
2014
, “
Modelling the Supercritical Carbon Dioxide Brayton Cycle With Recompression
,” Ph.D. dissertation, University of Wisconsin-Madison, Madison, WI.
13.
Korakianitis
,
T.
,
Vlachopoulos
,
N. E.
, and
Zou
,
D.
,
2005
, “
Models for the Prediction of Transients in Closed Regenerative Gas Turbine Cycles With Centrifugal Impellers
,”
ASME J. Eng. Gas Turbines Power
,
127
(
3
), pp.
505
513
.
14.
Kikstra
,
J. F.
, and
Verkooijen
,
A. H. M.
,
2002
, “
Dynamic Modeling of a Cogenerating Nuclear Gas Turbine Plant—Part I: Modeling and Validation
,”
ASME J. Eng. Gas Turbines Power
,
124
(
3
), pp.
725
733
.
15.
Bardia
,
A.
,
1980
, “
Dynamics and Control Modelling of the Closed-Cycle Gas Turbine (GT-HTGR) Power Plant
,”
Fourth Power Plant Dynamics, Control and Testing Symposium
, General Atomic Company, Gatlinburg, TN, Mar. 17, Paper No. GA-A15677.
16.
Dupont
,
J.
,
Jeanmonod
,
R.
, and
Frutschi
,
H. U.
,
1977
, “
Tugsim-10, A Computer Code for Transient Analysis of Closed-Cycle Gas Turbine Cycles and Specific Applications
,”
Nucl. Eng. Des.
,
40
(
2
), pp.
421
430
.
17.
Hilsenrath
,
J.
,
1960
,
Tables of Thermodynamic and Transport Properties of Air, Argon, Carbon Dioxide, Carbon Monoxide, Hydrogen, Nitrogen, Oxygen and Steam
,
Pergamon Press
,
Oxford, UK
.
18.
Hendricks
,
R. C.
,
Baron
,
A. K.
, and
Peller
,
I. C.
,
1975
, “
GASP—A Computer Code for Calculating the Thermodynamic and Transport Properties for Ten Fluids: Parahydrogen, Helium, Neon, Methane, Nitrogen, Carbon Monoxide, Oxygen, Fluorine, Argon and Carbon Dioxide
,” National Aeronautics and Space Administration, Cleveland, OH, p.
212
, Report No. NASA-TN-D-7808.
19.
Gordon
,
S.
, and
McBride
,
B. J.
,
1996
,
Computer Program for Calculation of Complex Chemical Equilibrium and Applications: Part II, User Manual and Program Description
,
NASA Reference Publication
, Cleveland, OH,
OH
, p.
135
.
20.
Irvine
,
T. F.
, and
Liley
,
P. E.
,
1984
,
Steam and Gas Tables With Computer Equations
,
Academic Press
,
Orlando, FL
, pp.
17
161
.
21.
Ulizar Alvarez
,
J. I.
,
1998
, “
Simulation of Multi Fluid Gas Turbines
,”
Ph.D. dissertation
, Cranfield University, Cranfield, UK, p.
436
.https://dspace.lib.cranfield.ac.uk/handle/1826/3537
22.
Korakianitis
,
T.
, and
Wilson
,
D. G.
,
1992
, “
Models for Predicting the Performance of Brayton-Cycle Engines
,”
ASME J. Eng. Gas Turbines Power
,
116
(
2
), pp.
361
371
.
23.
Shirakura
,
T.
, and
Awano
,
S.
,
1977
, “
Thermodynamical Performances of Closed-Cycle Gas-Turbine
,”
JSME/ASME Joint Gas Turbine Congress
, Tokyo, Japan, May 22–27, pp.
260
270
.
24.
Crim
,
W. M.
,
Hoffmann
,
J. R.
, and
Manning
,
G. B.
,
1966
, “
The Compact AK Process Nuclear System
,”
ASME J. Eng. Gas Turbines Power
,
88
(
2
), pp.
127
138
.
25.
Razak
,
A. M. Y.
,
2007
,
Industrial Gas Turbines—Performance and Operability
,
Woodhead Publishing
,
Cambridge, UK
, p.
624
.
26.
Saravanamuttoo
,
H.
,
Rogers
,
G.
, and
Cohen
,
H.
,
2001
,
Gas Turbine Theory
,
Prentice Hall
,
Harlow, UK
, p.
512
.
27.
Walsh
,
P. P.
, and
Fletcher
,
P.
,
1998
,
Gas Turbine Performance
,
Blackwell Science
,
Oxford, UK
, p.
664
.
28.
Shah
,
R. K.
, and
Sekulic
,
D. P.
,
2003
,
Fundamentals of Heat Exchanger Design
,
Wiley
, Hoboken,
NJ
, p.
976
.
29.
Kakac
,
S.
, and
Liu
,
H.
,
2002
,
Heat Exchangers Selection, Rating and Thermal Design
,
CPC Press
,
New York
, p.
520
.
30.
Navarro
,
H. A.
, and
Cabezas-Gómez
,
L. C.
,
2007
, “
Effectiveness-NTU Computation With a Mathematical Model for Cross-Flow Heat Exchangers
,”
Braz. J. Chem. Eng.
,
24
(
4
), pp.
509
521
.
31.
Rademaker
,
E. R.
,
2012
, “
Scaling of Compressor and Turbine Maps on the Basis of Equal Flow Mach Numbers and Static Flow Parameters
,” National Aerospace Laboratory Report (NLR), Amsterdam, The Netherlands, Report No. NLR-TP-2012–257.
32.
Kurzke
,
J.
,
2011
, “
Correlations Hidden in Compressor Maps
,”
ASME
Paper No. GT2011-45519.
33.
Botha
,
B. W.
, and
Rousseau
,
P. G.
,
2007
, “
Control Options for Load Rejection in a Three-Shaft Closed Cycle Gas Turbine Power Plant
,”
ASME J. Eng. Gas Turbines Power
,
129
(
3
), pp.
806
813
.
34.
Openshaw
,
F.
,
Estrin
,
E.
, and
Croft
,
M.
,
1976
, “
Control of a Gas Turbine HTGR
,”
ASME
Paper No. 76-GT-97.
35.
Covert
,
R. E.
,
Krase
,
G.
, and
Morse
,
D. C.
,
1974
, “
Effect of Various Control Modes on the Steady-State Full and Part Load Performance of a Direct-Cycle Nuclear Gas Turbine Power Plant
,”
ASME
Paper No. 74-GT-007.
36.
Al-Hamdan
,
Q. Z.
, and
Ebaid
,
M. S.
,
2006
, “
Modelling and Simulation of a Gas Turbine Engine for Power Generation
,”
ASME J. Eng. Gas Turbines Power
,
128
(
2
), pp.
302
311
.
37.
Chapra
,
S.
, and
Canale
,
R.
,
2015
,
Numerical Methods for Engineers
,
McGraw-Hill
,
New York
, Chap. 5–7.
38.
Yan
,
X.
,
Takizuka
,
T.
,
Takada
,
S.
,
Kunitomi
,
K.
,
Minatsuki
,
I.
, and
Mizokami
,
Y.
,
2003
, “
Cost and Performance Design Approach for GTHTR300 Power Conversion System
,”
Nucl. Eng. Des.
,
226
(
3
), pp.
351
373
.
39.
Yan
,
X.
,
Kunitomi
,
K.
,
Nakata
,
T.
, and
Shiozawa
,
S.
,
2003
, “
GTHTR300 Design and Development
,”
Nucl. Eng. Des.
,
222
(
2–3
), pp.
247
262
.
40.
Yan
,
X.
,
Sato
,
H.
,
Kamiji
,
Y.
,
Imai
,
Y.
,
Terada
,
A.
,
Tachibana
,
Y.
, and
Kunitomi
,
K.
,
2016
, “
GTHTR300 Cost Reduction Through Design Upgrade and Cogeneration
,”
Nucl. Eng. Des.
,
306
, pp.
215
220
.
41.
Kunitomi
,
K.
,
Katanishi
,
S.
,
Takada
,
S.
,
Takizuka
,
T.
, and
Yan
,
X.
,
2004
, “
Japan's Future HTR—The GTHTR300
,”
Nucl. Eng. Des.
,
233
(
1–3
), pp.
309
327
.
42.
Frutschi
,
H. U.
,
2005
,
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
,
ASME Publishing
,
New York
, p.
283
.
43.
Keller
,
C.
,
1961
, “
The Coal-Burning Closed-Cycle Gas Turbine
,”
ASME
Paper No. 61-GTP-2.
44.
Janis
,
J. M.
,
Braun
,
G. S.
, and
Ryan
,
R. D.
,
1967
, “
Performance Testing of the Compact APCSE Closed Brayton-Cycle System
,”
ASME
Paper No. 67-GT-34.
45.
Aziaka
,
D. S.
,
Osigwe
,
E. O.
, and
Lebele-Alawa
,
B. T.
,
2014
, “
Structural and Conceptual Design Analysis of an Axial Compressor for a 100 MW Industrial Gas Turbine (IND100)
,”
World J. Mech.
,
4
(
11
), pp.
332
347
.
You do not currently have access to this content.