The safety features of the future nuclear fusion reactors are one of the key issues for their attractiveness if compared with the fission plants. In fusion devices, accidents with high release of radioactive materials have low probabilities because the most part of abnormal transients lead to passive plasma shutdown. It does not mean that radiological source terms such tritium and activated dust are not generated and released, but their inventory does not increase during abnormal events. Therefore, the source term inventory has to be assessed during normal operation and traced when accidents occur. For this reason, a study for qualification and quantification of the tritium and dust source term (DTS) was established with the aim to understand their production, deposition, and penetration in the vacuum vessel (VV) and in the breeding blanket (BB). The main concern is source term release during the main accident scenarios to comply with a future licensing process. In case of abnormal event scenarios, the source term inventory involved in the release changes and requires a different confinement approach and mitigation. For the estimation of the source term in the DEMOnstration Fusion Power Station (DEMO), a methodology was developed. The methodology scales the tritium and DTS inside the VV from the International Thermonuclear Experimental Reactor, the European Power Plant Conceptual Study, and reports the tritium generated inside the breeder blanket from data quantified in other studies for DEMO. In this article, the methodology was updated and tritium and DTS for DEMO 2016 design were estimated. Moreover, the tritium and dust release pathways were highlighted according to different accidental scenarios. These results were obtained for all blanket concepts, which are analyzing in the ongoing DEMO EUROFusion project. The values estimated in this article will be used in the safety analyses to evaluate releases or to quantify the operational limits starting from values postulated in International Thermonuclear Experimental Reactor.

References

References
1.
Mazzini
,
G.
,
Kaliatka
,
T.
,
Porfiri
,
M. T.
,
Poggi
,
L. A.
,
Malizia
,
A.
, and
Gaudio
,
P.
,
2017
, “
Methodology of the Source Term Estimation for DEMO Reactor
,”
Fusion Eng. Des.
,
124
, pp. 1199–1202.
2.
Shimada
,
M.
,
Pitts
,
R. A.
,
Ciattaglia
,
S.
,
Carpentier
,
S.
,
Choi
,
C. H.
,
Dell Orco
,
G.
,
Hirai
,
T.
,
Kukushkin
,
A.
,
Lisgo
,
S.
,
Palmer
,
J.
,
Shu
,
W.
, and
Veshchev
,
E.
,
2013
, “
In-Vessel Dust and Tritium Control Strategy in ITER
,”
J. Nucl. Mater.
,
438
(Suppl.), pp. S996–S1000.
3.
Federici
,
G.
,
Biel
,
W.
,
Gilbert
,
M. R.
,
Kemp
,
R.
,
Taylor
,
N.
, and
Wenninger
,
R.
,
2017
, “
European DEMO Design Strategy and Consequences for Materials
,”
Nucl. Fusion
,
57
(9), p. 092002.https://iopscience.iop.org/article/10.1088/1741-4326/57/9/092002/meta
4.
ITER, 2018, “
ITER Organization
,” ITER, Cadarace, France, accessed Apr. 13, 2019, https://www.iter.org/
5.
Maisonnier
,
D.
,
Cook
,
I.
,
Sardain
,
P.
,
Andreani
,
R.
,
Di Pace
,
L.
,
Forrest
,
R.
,
Giancarli
,
L.
,
Hermsmeyer
,
S.
,
Norajitra
,
P.
,
Taylor
,
N.
, and
Ward
,
D.
,
2005
, “
A Conceptual Study of Commercial Fusion Power Plant (PPCS)
,” European Fusion Development Agreement (EFDA), Report No. EFDA-RP-RE-5.0.
6.
Jin
,
X. Z.
,
Carloni
,
D.
,
Boccaccini
,
L. V.
,
Stieglitz
,
R.
,
Pinna
,
T.
, and
Dongiovanni
,
D.
,
2015
, “
Preliminary Safety Studies for the DEMO HCPB Blanket Concept
,”
Fusion Eng. Des.
,
98–99
, pp. 2157–2161.
7.
Candido
,
L.
,
Utili
,
M.
,
Nicolotti
,
I.
, and
Zucchetti
,
M.
,
2016
, “
Tritium Transport in HCLL and WCLL DEMO Blankets
,”
Fusion Eng. Des.
,
109–111
(Part A), pp. 248–254.https://www.sciencedirect.com/science/article/pii/S0920379616302137
8.
Urgorri
,
F. R.
,
2015
, “
Preliminary System Modelling for WCLL
,”
Fusion Sci. Technol.
,
71
, pp. 444–449.
9.
Demange
,
D.
,
Antunes
,
R.
,
Borisevich
,
O.
,
Frances
,
L.
,
Rapisarda
,
D.
,
Santucci
,
A.
, and
Utili
,
M.
,
2016
, “
Tritium Extraction Technologies and DEMO Requirements
,”
Fusion Eng. Des.
,
109–111
(
633053
), pp.
912
916
.
10.
Urgorri
,
F. R.
,
Moreno
,
C.
,
Carella
,
E.
,
Rapisarda
,
D.
,
Fernández-Berceruelo
,
I.
,
Palermo
,
I.
, and
Ibarra
,
A.
,
2017
, “
Tritium Transport Modeling at System Level for the EUROfusion Dual Coolant Lithium-Lead Breeding Blanket
,”
Nucl. Fusion
,
57
(11), p. 116045.https://iopscience.iop.org/article/10.1088/1741-4326/aa7f9d
11.
Donné
,
T.
, and
Federici
,
G.
, 2015, “
Overview of Design and R&D Activities Towards a European DEMO
,” 12th International Symposium on Fusion Nuclear Technology (ISFNT), Jeju Island, South Korea, Sept. 14–18, Paper No. EUROFUSION CP(15)06/40.
12.
Pinna
,
T.
,
Carloni
,
D.
,
Carpignano
,
A.
,
Ciattaglia
,
S.
,
Johnston
,
J.
,
Porfiri
,
M. T.
,
Savoldi
,
L.
,
Taylor
,
N.
,
Sobrero
,
G.
,
Uggenti
,
A. C.
,
Vaisnoras
,
M.
, and
Zanino
,
R.
,
2017
, “
Identification of Accident Sequences for the DEMO Plant
,”
Fusion Eng. Des.
,
124
, pp. 1277–1280.
13.
European Nuclear Society
,
2018
, “
Nuclear Power Plants, World-Wide
,” European Nuclear Society, Brussels, Belgium, accessed Dec. 21, 2018, http://www.euronuclear.org/info/encyclopedia/n/nuclear-power-plant-world-wide.htm
14.
Thomson
,
G. P.
, and
Blackman
,
M.
,
1959
, “
Improvements in or Relating to Gas Discharge Apparatus for Producing Thermonuclear Reactions
,” U.S. Department of Energy Office of Scientific and Technical Information, UK, Report No.
GB 817681
https://www.osti.gov/biblio/4178205-improvements-relating-gas-discharge-apparatus-producing-thermonuclear-reactions.
15.
EPRI
,
2012
, “
Program on Technology Innovation: Assessment of Fusion Energy Options for Commercial Electricity Production
,” EPRI, Palo Alto, CA, Final Report No. 1025636.
16.
Fusion for Energy
,
2018
, “
Demonstration Power Plants (DEMO)
,” Fusion for Energy, Garching bei München, Germany, accessed Apr. 13, 2019, https://f4e.europa.eu/understandingfusion/demo.aspx.
17.
Cismondi
,
F.
,
Boccaccini
,
L. V.
,
Aiello
,
G.
,
Aubert
,
J.
,
Bachmann
,
C.
,
Barrett
,
T.
,
Barucca
,
L.
,
Bubelis
,
E.
,
Ciattaglia
,
S.
,
Del Nevo
,
A.
,
Diegele
,
E.
,
Gasparotto
,
M.
,
Di Gironimo
,
G.
,
Di Maio
,
P. A.
,
Hernandez
,
F.
,
Federici
,
G.
,
Fernández-Berceruelo
,
I.
,
Franke
,
T.
,
Froio
,
A.
,
Gliss
,
C.
,
Keep
,
J.
,
Loving
,
A.
,
Martelli
,
E.
,
Maviglia
,
F.
,
Moscato
,
I.
,
Mozzillo
,
R.
,
Poitevin
,
Y.
,
Rapisarda
,
D.
,
Savoldi
,
L.
,
Tarallo
,
A.
,
Utili
,
M.
,
Vala
,
L.
,
Veres
,
G.
, and
Zanino
,
R.
,
2018
, “
Progress in EU Breeding Blanket Design and Integration
,”
Fusion Eng. Des.
,
136
(Part A), pp. 782–792.
18.
EUROfusion
,
2019
, “
European Consortium for the Development of Fusion Energy (EUROfusion) Project
,” EUROfusion, Karlsruhe, Germany, accessed Apr. 13, 2019, https://www.inr.kit.edu/english/594.php.
19.
Boccaccini
,
L. V.
,
Aiello
,
G.
,
Aubert
,
J.
,
Bachmann
,
C.
,
Barrett
,
T.
,
Del Nevo
,
A.
,
Demange
,
D.
,
Forest
,
L.
,
Hernandez
,
F.
,
Norajitra
,
P.
,
Porempovic
,
G.
,
Rapisarda
,
D.
,
Sardain
,
P.
,
Utili
,
M.
, and
Vala
,
L.
,
2016
, “
Objectives and Status of EUROfusion DEMO Blanket Studies
,”
Fusion Eng. Des.
,
109–111
(Part B), pp. 1199–1206.
20.
Loarte
,
A.
,
Saibene
,
G.
,
Sartori
,
R.
,
Eich
,
T.
,
Kallenbach
,
A.
,
Suttrop
,
W.
,
Kempenaars
,
M.
,
Beurskens
,
M.
,
de Baar
,
M.
,
Lönnroth
,
J.
,
Lomas
,
P. J.
,
Matthews
,
G.
,
Fundamenski
,
W.
,
Parail
,
V.
,
Becoulet
,
M.
,
Monier-Garbet
,
P.
,
de la Luna
,
E.
,
Gonçalves
,
B.
,
Silva
,
C.
, and
Corre
,
Y.
,
2004
, “
Characterization of Pedestal Parameters and Edge Localized Mode Energy Losses in the Joint European Torus and Predictions for the International Thermonuclear Experimental Reactor
,”
Phys. Plasmas
,
11
(
5
), pp.
2668
2678
.
21.
Boccaccini
,
L. V.
,
Aiello
,
G.
,
Del Nevo
,
A.
,
Norajitra
,
P.
,
Rapisarda
,
D.
, and
Bachmann
,
C.
,
2014
, “
European DEMO Breeding Blanket Design and Development Strategy in a Roadmap to the Realisation of Fusion Energy
,”
Fusion Energy Conference (FEC 2014)
, Saint Petersburg, Russia, Oct. 13–18, Paper No. 46091.
22.
Gauntt
,
R. O.
,
Cole
,
R. K.
,
Erickson
,
C. M.
,
Gido
,
R. G.
,
Gasser
,
R. D.
,
Rodriguez
,
S. B.
, and
Young
,
M. F.
,
2005
, “
MELCOR Computer Code Manuals Version 1.8.6
,” Sandia National Laboratories, Albuquerque, NM.
23.
Merrill
,
B. J.
,
2011
, “
Aerosol Resuspension Model for MELCOR for Fusion and Very High Temperature Reactor Applications
,” Idaho National Laboratory Next Generation Nuclear Plant Project, Idaho Falls, ID.
24.
Skinner
,
C. H.
,
Haasz
,
A. A.
,
Alimov
,
V. K.
,
Bekris
,
N.
,
Causey
,
R. A.
,
Clark
,
R. E. H.
,
Coad
,
J. P.
,
Davis
,
J. W.
,
Doerner
,
R. P.
,
Mayer
,
M.
,
Pisarev
,
A.
,
Roth
,
J.
, and
Tanabe
,
T.
,
2008
, “
Recent Advances on Hydrogen Retention in Iter's Plasma-Facing Materials: Beryllium, Carbon. And Tungsten
,”
Fusion Sci. Technol.
,
54
(
4
), pp.
891
945
.
25.
Ciattaglia
,
S.
,
2011
, “
Strategy and Plan for in-Vacuum Vessel Dust (and Tritium Retention) Control in ITER. Status November 2011
,”
Second RCM of IAEA Dust CRP
, Vienna, Austria, Oct. 16–20, Paper No. L5-RC-55758.
26.
Federici
,
G.
,
Bachmann
,
C.
,
Biel
,
W.
,
Boccaccini
,
L.
,
Cismondi
,
F.
,
Ciattaglia
,
S.
,
Coleman
,
M.
,
Day
,
C.
,
Diegele
,
E.
,
Franke
,
T.
,
Grattarola
,
M.
,
Hurzlmeier
,
H.
,
Ibarra
,
A.
,
Loving
,
A.
,
Maviglia
,
F.
,
Meszaros
,
B.
,
Morlock
,
C.
,
Rieth
,
M.
,
Shannon
,
M.
,
Taylor
,
N.
,
Tran
,
M. Q.
,
You
,
J. H.
,
Wenninger
,
R.
, and
Zani
,
L.
,
2016
, “
Overview of the Design Approach and Prioritization of R&D Activities Towards an EU DEMO
,”
Fusion Eng. Des.
,
109–111
(Part B), pp. 1464–1474.
27.
Tanabe
,
T.
,
2017
,
Tritium: Fuel of Fusion Reactors
,
Springer
, New York.
28.
Humphreys
,
D. A.
,
2010
, “
High Reliability Operation and Disruption Control in Tokamaks
,”
Fusion Sci. Technol.
,
59
(
3
), pp.
619
620
.
29.
Widdowson
,
A.
,
Alves
,
E.
,
Baron-Wiechec
,
A.
,
Barradas
,
N. P.
,
Catarino
,
N.
,
Coad
,
J. P.
,
Corregidor
,
V.
,
Garcia-Carrasco
,
A.
,
Heinola
,
K.
,
Koivuranta
,
S.
,
Krat
,
S.
,
Lahtinen
,
A.
,
Likonen
,
J.
,
Mayer
,
M.
,
Petersson
,
P.
,
Rubel
,
M.
, and
Van Boxel
,
S.
,
2017
, “
Overview of the JET ITER-Like Wall Divertor
,”
Nucl. Mater. Energy
,
12
, pp. 499–505.
30.
Santucci
,
A.
,
2018
, “
Status of CPS Activities—TFV Project
,”
KDI2 Meeting
, Garching bei München, Germany.
You do not currently have access to this content.