This paper presents results on the effect of a surface treatment on the environmentally assisted corrosion cracking in a pressurized water reactor chemistry. Slow strain rate testing of 316 L austenitic steel with selected rates was performed at pressurized water reactor (PWR) simulated water at 350 °C and in air at 300 °C. Detailed prior and post-testing characterization of two types of surfaces including roughness, hardness, and microstructural analysis was made. Transgranular cleavage-like environmentally assisted cracking (EAC) initiation and growth were observed under PWR conditions. The effect of two surface finishes on the cracking initiation was observed: (i) first crack initiates from the polished surface in a vicinity of the necking area rather than from the ground surface and (ii) then the deeper crack develops in the minimal diameter from the polished surface side than from the ground one.

References

References
1.
Shoji
,
T.
,
2003
, “
Progress in the Mechanistic Understanding of BWR SCC and Its Implication to the Prediction of SCC Growth Behavior in Plants
,”
11th International Conference on Environmental Degradation of Materials in Nuclear Systems
, Stevenson, WA, Aug. 10–14, pp.
588
–.
2.
Couvant
,
T.
,
Moulart
,
P.
,
Legras
,
L.
,
Bordes
,
P.
,
Capelle
,
J.
,
Rouillon
,
Y.
, and
Balon
,
T.
,
2006
, “
PWSCC of Austenitic Stainless Steels of Heaters of Pressurizers
,”
Sixth Symposium Fontevraud
, Fontevraud, France, Paper No. A100-T03.
3.
Huguenin
,
P.
,
Crépin
,
J.
,
Duhamel
,
C.
,
Proudhon
,
H.
, and
Vaillant
,
F.
,
2013
, “
Initiation of Stress Corrosion Cracking in Pre-Strained Austenitic Stainless Steels Exposed to Primary Water
,”
16th International Conference on Environmental Degradation of Materials in Nuclear Power Systems
, Asheville, NC, Aug. 11–15, Paper No. 3081.
4.
Cissé
,
S.
,
Laffont
,
L.
,
Lafont
,
M.-C.
,
Tanguy
,
B.
, and
Andrieu
,
E.
,
2013
, “
Influence of Localized Plasticity on Oxidation Behaviour of Austenitic Stainless Steels Under Primary Water Reactor
,”
J. Nucl. Mater.
,
433
(
1–3
), pp.
319
328
.
5.
Shoji
,
T.
,
Lu
,
Z.
, and
Murakami
,
H.
,
2010
, “
Formulating Stress Corrosion Cracking Growth Rates by Combination of Crack Tip Mechanics and Crack Tip Oxidation Kinetics
,”
Corros. Sci.
,
52
(
3
), pp.
769
779
.
6.
Terachi
,
T.
,
Yamada
,
T.
,
Miyamoto
,
T.
, and
Arioka
,
K.
,
2012
, “
SCC Growth Behaviors of Austenitic Stainless Steels in Simulated PWR Primary Water
,”
J. Nucl. Mater.
,
426
(
1–3
), pp.
59
70
.
7.
Turnbull
,
A.
,
Mingard
,
K.
,
Lord
,
J. D.
,
Roebuck
,
B.
,
Tice
,
D. R.
,
Mottershead
,
K. J.
,
Fairweather
,
N. D.
, and
Bradbury
,
A. K.
,
2011
, “
Sensitivity of Stress Corrosion Cracking of Stainless Steel to Surface Machining and Grinding Procedure
,”
Corros. Sci.
,
53
(
10
), pp.
3398
3415
.
8.
Chang
,
L.
,
Burke
,
M. G.
, and
Scenini
,
F.
,
2018
, “
Stress Corrosion Crack Initiation in Machined Type 316 L Austenitic Stainless Steel in Simulated Pressurized Water Reactor Primary Water
,”
Corros. Sci.
,
138
, pp.
54
65
.
9.
Chang
,
L.
,
Volpe
,
L.
,
Wang
,
Y. L.
,
Burke
,
M. G.
,
Maurotto
,
A.
,
Tice
,
D.
,
Lozano-Perez
,
S.
, and
Scenini
,
F.
,
2019
, “
Effect of Machining on Stress Corrosion Crack Initiation in Warm-Forged Type 304 L Stainless Steel in High Temperature Water
,”
Acta Mater.
,
165
, pp.
203
214
.
10.
Ooki
,
S.
,
Tanaka
,
Y.
,
Takamori
,
K.
,
Suzuki
,
S.
,
Tanaka
,
S.
,
Saito
,
Y.
,
Nakamura
,
T.
,
Kato
,
T.
,
Chatani
,
K.
, and
Kodama
,
M.
, 2003, “
Study on SCC Growth Behavior of BWR Core Shroud
,”
Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power System–Water Reactors
, T. R. Allen, P. J. King, and L. Nelson, eds., TMS (The Minerals, Metals & Materials Society), Pittsburgh, PA, pp. 365–376.
11.
Staehle
,
R. W.
,
2008
, “
Introduction to Initiation
,”
Workshop on Detection, Avoidance, Mechanisms, Modelling, and Prediction of SCC Initiation in Water-Cooled Nuclear Reactor Plants
, Beaune, Burgundy, France, Sept. 7–12, Paper No. 33.
12.
Couvant
,
T.
,
Legras
,
L.
,
Herbelin
,
A.
,
Musienko
,
A.
,
Ilevbare
,
G.
,
Delafosse
,
D.
,
Cailletaud
,
G.
, and
Hickling
,
J.
,
2009
, “
Development of Understanding of the Interaction Between Localized Deformation and SCC of Austenitic Stainless Steels Exposed to Primary PWR Environment
,”
14th International Conference on Environmental Degradation of Materials in Nuclear Power Systems
, Virginia Beach, VA, Aug. 23–27, pp. 182–194.https://www.researchgate.net/publication/256445014_Development_of_Understanding_of_The_Interaction_between_Localized_deformation_and_SCC_of_Austenitic_Stainless_Steels_Exposed_to_Primary_Environment
13.
Yu
,
J.
,
Xue
,
L. J.
,
Zhao
,
Z. J.
,
Chi
,
G. X.
, and
Parkins
,
R. N.
,
1989
, “
Determination of Stress Corrosion Crack Initiation Stress and Crack Velocities Using Slowly Strained Tapered Specimens
,”
Fatigue Fract. Eng. Mater. Struct.
,
12
(
6
), pp.
481
493
.
14.
Berger
,
S.
,
Kilian
,
R.
,
Ritter
,
S.
,
Ehrnstén
,
U.
,
Bosch
,
R.-W.
, and
Perosanz Lopez
,
F.-J.
,
2016
, “
Mitigation of Crack Initiation in LWRs (MICRIN+)
,”
Eurocorr
, Montpellier, France, Sept. 11–15, Paper No. 65952.
15.
Ritter
,
S.
,
Kilian
,
R.
,
Herbst
,
M.
,
Bosch
,
R. W.
,
Burke
,
G.
,
Scenini
,
F.
,
Dinu
,
A.
,
Ehrnstén
,
U.
,
Hojná
,
A.
,
Novotný
,
R.
,
Martin
,
O.
,
Perosanz
,
F. J.
, and
Zajec
,
B.
,
2018
, “
Accelerated Testing of Stress Corrosion Cracking Initiation in High-Temperature Water—Results From the MICRIN Collaborative Project
,”
Eurocorr 2018
, Krakow, Poland, Sept. 9–13, Paper No. 119012.
16.
Gorse
,
D.
,
Auger
,
T.
,
Vogt
,
J.-B.
,
Serre
,
I.
,
Weisenburger
,
A.
,
Gessi
,
A.
,
Agostini
,
P.
,
Fazio
,
C.
,
Hojna
,
A.
,
Di Gabriele
,
F.
,
Van Den Bosch
,
J.
,
Coen
,
G.
,
Almazouzi
,
A.
, and
Serrano
,
M.
,
2011
, “
Influence of Liquid Lead and Lead–Bismuth Eutectic on Tensile, Fatigue and Creep Properties of Ferritic/Martensitic and Austenitic Steels for Transmutation Systems
,”
J. Nucl. Mater.
,
415
(
3
), pp.
284
292
.
You do not currently have access to this content.