The technology of molten salt oxidation (MSO) is a thermal treatment process mainly used for reprocessing of hazardous organic waste. This technology is considered as an alternative to the conventional incineration processes. The principle of the whole technology is based on flameless oxidation of materials in the molten salt with the consequent capture of gaseous products in molten alkaline salts. The melts with low melting point and high viscosity, such as a ternary mixture of carbonates Na2CO3, K2CO3, and Li2CO3, are the most used in this technology. However, the molten salts create a very corrosive environment for metal and ceramic materials, so the main aim of this experimental work was to determine the resistance of corundum samples, which were prepared by plasma spraying, and to find out its potential use as the protection of the reactor metal surface.

References

References
1.
Griffiths
,
T. R. R.
,
Volkovich
,
V. A.
, and
Carper
,
W. R.
,
2007
, “
CEMSO (Catalyst Enhanced Molten Salt Oxidation) for Complete and Continuous Pyrochemical Reprocessing of Spent Nuclear Fuel: An Overview of a Viable New Technology for Next Generation Nuclear Reactors
,”
ECS Trans.
,
3
(
35
), pp.
467
482
.https://doi.org/10.1149/1.2798690
2.
Yang
,
H. C.
,
Cho
,
Y. J.
,
Eun
,
H. C.
,
Yoo
,
J. H.
, and
Kim
,
J. H.
,
2005
, “
Molten Salt Oxidation of Ion-Exchange Resins Doped With Toxic Metals and Radioactive Metal Surrogates
,”
J. Nucl. Sci. Technol.
,
42
(
1
), pp.
123
129
.
3.
Yao
,
Z.
,
Li
,
J.
, and
Zhao
,
X.
,
2011
, “
Molten Salt Oxidation: A Versatile and Promising Technology for the Destruction of Organic-Containing Wastes
,”
Chemosphere
,
84
(
9
), pp.
1167
1174
.
4.
Hsu
,
P. C.
,
Foster
,
K. G.
,
Ford
,
T. D.
,
Wallman
,
P. H.
,
Watkins
,
B. E.
,
Pruneda
,
C. O.
, and
Adamson
,
M. G.
,
2000
, “
Treatment of Solid Wastes With Molten Salt Oxidation
,”
Waste Manage.
,
20
(
5–6
), pp.
363
368
.
5.
Hadrava
,
J.
,
Galek
,
V.
, and
Hrbek
,
J.
,
2016
, “
Bezplamenné Spalování Radioaktivních a Nebezpečných Odpadů v Tavenině Soli MSO
,”
Elecroscope
,
1
(
2
), pp.
1
5
(in Czech).
6.
Stoklasa
,
J.
,
Pražák
,
P.
,
Lucie
,
I.
, and
Nenadálová
,
K.
,
2016
, “
Dílčí procedury, chování a charakter komponent během procesu oxidačního spalování v roztavené soli
,”
TVIP, Hustopoče
, Czech Republic, Mar. 15–18, pp.
1
7
(in Czech).
7.
Stoklasa
,
J.
,
Galek
,
V.
,
Pražák
,
P.
,
Karásková Nenadálová
,
L.
, and
Kůs
,
P.
,
2016
, “
Zneškodňování Radioaktivně Kontaminovaných Iontoměničů Oxidací v Tavenině Soli
,” accessed Jan. 17, 2019, http://cvrez.cz/en/research-and-development/research-projects/mso/
8.
Yang
,
H. C.
,
Lee
,
M. W.
,
Yoon
,
I. H.
,
Chung
,
D. Y.
, and
Moon
,
J. K.
,
2013
, “
Scale-Up and Optimization of a Two-Stage Molten Salt Oxidation Reactor System for the Treatment of Cation Exchange Resins
,”
Chem. Eng. Res. Des.
,
91
(
4
), pp.
703
712
.
9.
Galek
,
V.
,
Stoklasa
,
J.
, and
Pražák
,
P.
,
2017
, “
Technologie MSO: Ekologická možnost likvidace odpad ů s vysokou korozní rychlostí materiál ů
,”
TVIP
, Hustopeče, Czech Republic, Mar. 21–23, pp.
1
7
(in Czech).
10.
ICDD,
2017
, “
JCPDS PDF-4 Database
,” International Centre for Diffraction Data, Newtown Square, PA.
11.
Doebelin
,
N.
, and
Kleeberg
,
R.
,
2015
, “
Profex: A Graphical User Interface for the Rietveld Refinement Program BGMN
,”
J. Appl. Crystallogr.
,
48
(
5
), pp.
1573
1580
.
12.
ICSD,
2017
, “
ICSD Database
,” FIZ Karlsruhe, Germany.
You do not currently have access to this content.