In the design study of advanced loop-type sodium-cooled fast reactor in Japan, a specific fuel assembly (FA) called FA with inner duct structure (FAIDUS) is expected to enhance reactor safety during a core-disruptive accident. Evaluating the thermal-hydraulics in FAIDUS under various operating conditions is required for its design. This study is the first step toward confirming the design feasibility of FAIDUS; the thermal-hydraulics in FAIDUS are investigated with an in-house subchannel analysis code called asymmetrical flow in reactor elements (ASFRE), which can be applied to a wire-wrapped fuel pin bundle in conjunction with the distributed resistance model (DRM) and the turbulence-mixing model of the Todreas–Turi correlation model (TTM). Before simulating the thermal-hydraulics in FAIDUS, a few validations of DRM and TTM are conducted by comparing the numerical results of the pressure drop coefficients or temperature distribution obtained using ASFRE with the experimental data obtained using an apparatus with water or sodium for simulated FAs. After these validations, thermal-hydraulic analyses of FAIDUS and a typical FA are conducted for comparison. The numerical results indicate that, at a high flow rate simulating rated operation condition, no significant asymmetric temperature and velocity distribution occur in FAIDUS compared to the distribution in the typical FA. In addition, at a low flow rate simulating natural circulation condition in decay heat removal, the temperature distribution in FAIDUS is similar to that in the typical FA. This is because the local flow acceleration and the flow redistribution due to buoyancy force may occur in FAIDUS and the typical FA.

References

1.
Ichimiya
,
M.
,
Mizuno
,
T.
, and
Kotake
,
S.
,
2007
, “
A Next Generation Sodium-Cooled Fast Reactor Concept and Its R&D Program
,”
Nucl. Eng. Technol.
,
39
(
3
), pp.
171
186
.
2.
Aoto
,
K.
,
Uto
,
N.
,
Sakamoto
,
Y.
,
Ito
,
Y.
,
Toda
,
M.
, and
Kotake
,
S.
,
2011
, “
Design Study and R&D Progress on Japan Sodium-Cooled Fast Reactor
,”
J. Nucl. Sci. Technol.
,
48
(
4
), pp.
463
471
.
3.
Okano
,
Y.
,
Ohshima
,
H.
, and
Okubo
,
T.
,
2011
, “
Sub-Channel Analysis of Innovative Fuel Assembly Concept: FAIDUS for Sodium-Cooled Fast Reactor
,”
Trans. Am. Nucl. Soc.
,
104
(1), pp.
1049
1051
.http://www.ans.org/pubs/transactions/https://jopss.jaea.go.jp/search/servlet/search?5029029&language=1
4.
Ohshima
,
H.
,
Narita
,
H.
, and
Ninokata
,
H.
,
1997
, “
Thermal-Hydraulic Analysis of Fast Reactor Fuel Subassembly With Porous Blockages
,”
Fourth International Seminar on Subchannel Analysis (ISSCA-4)
,
Tokyo, Japan
,
Sept. 25–26
, pp.
323
333
.
5.
Ninokata
,
H.
,
Efthimiadis
,
A.
, and
Todreas
,
N. E.
,
1987
, “
Distributed Resistance Modeling of Wire-Wrapped Rod Bundles
,”
Nucl. Eng. Des.
,
104
(
1
), pp.
93
102
.
6.
Todreas
,
N. E.
, and
Turi
,
J. A.
,
1972
, “
Interchannel Mixing in Wire Wrapped Liquid Metal Fast Reactor Fuel Assemblies
,”
Nucl. Technol.
,
13
(
1
), pp.
36
52
.
7.
Liles
,
D. R.
, and
Reed
,
W. H.
,
1978
, “
A Semi-Implicit Method for Two-Phase Fluid Dynamics
,”
J. Comput. Phys.
,
26
(
3
), pp.
390
407
.
8.
Meiherink
,
J. A.
, and
Van Der Vorst
,
H. A.
,
1981
, “
Guidelines for the Usage of Incomplete Decompositions in Solving Sets of Linear Equations as They Occur in Practical Problems
,”
J. Comput. Phys.
,
44
, pp.
134
155
.
9.
Rehme
,
K.
,
1973
, “
Simple Method of Prediction Friction Factors of Turbulent Flow in Non-Circular Channels
,”
Int. J. Heat Mass Transfer
,
16
(
5
), pp.
933
950
.
10.
Gunter
,
A. Y.
, and
Shaw
,
W. A.
,
1945
, “
A General Correlation of Friction Factors of Various Types of Surfaces in Crossflow
,”
Trans. ASME
,
67
(8), pp.
643
660
.
11.
Narita
,
H.
, and
Ohshima
,
H.
,
1996
, “
Improvement of Single-Phase Subchannel Analysis Code ASFRE-III—Modification of Fuel Pin Heat Conduction Model
,” Japan Atomic Energy Agency, Oarai, Japan, No. PNC-TN9410 96-116 (in Japanese).
12.
Tang
,
Y. S.
,
Coffield
,
R. D.
, Jr.
, and
Markley
,
R. A.
,
1978
,
Thermal Analysis of Liquid-Metal Fast Breeder Reactors
,
American Nuclear Society
,
Washington, DC
, pp.
198
200
.
13.
Satoh
,
K.
,
Kogawa
,
T.
,
Miyaguchi
,
K.
, and
Iguchi
,
T.
,
1981
, “
‘JOYO’ MK-II Fuel Assembly Flow Test (V)—Flow Resistance Characteristics of the Fourth Mock-Up Core Fuel Assembly
,” Japan Atomic Energy Agency, Oarai, Japan, No. PNC-SN941 81-62 (in Japanese).
14.
Sato
,
K.
,
Kogawa
,
T.
,
Miyaguchi
,
K.
, and
Iguchi
,
T.
,
1980
, “
Prototype LMFBR ‘MONJU’ Fuel Assembly Hydraulic Simulation Test (VII) Flow Resistance of the Fifth Mock-Up Fuel Assembly
,” Japan Atomic Energy Agency, Oarai, Japan, No. PNC-SN941 80-24 (in Japanese).
15.
Cheng
,
S. K.
, and
Todreas
,
N. E.
,
1986
, “
Hydrodynamic Models and Correlations for Bare and Wire-Wrapped Hexagonal Rod Bundles—Bundle Friction Factors, Subchannel Friction Factors and Mixing Parameters
,”
Nucl. Eng. Des.
,
92
(
2
), pp.
227
251
.
16.
Chen
,
S. K.
,
Todreas
,
N. E.
, and
Nguyen
,
N. T.
,
2014
, “
Evaluation of Existing Correlations for the Prediction of Pressure Drop in Wire-Wrapped Hexagonal Array Pin Bundles
,”
Nucl. Eng. Des.
,
267
, pp.
109
131
.
17.
Kabir
,
M. E.
, and
Hayafune
,
H.
,
1992
, “
Study of Thermo-Hydraulic Behavior Within the Fuel Bundle Under a Loss of Flow Condition
,” Japan Atomic Energy Agency, Oarai, Japan, No. PNC-TN9410 92-018.
18.
Kamide
,
H.
,
Hayashi
,
K.
, and
Toda
,
S.
,
1998
, “
An Experimental Study of Inter-Subassembly Heat Transfer During Natural Circulation Decay Heat Removal in Fast Breeder Reactors
,”
Nucl. Eng. Des.
,
183
(
1–2
), pp.
97
106
.
19.
Otaka
,
M.
,
Ohshima
,
H.
,
Ninokata
,
H.
, and
Narita
,
H.
,
1996
, “
Validation of Single-Phase Subchannel Analysis Code ASFRE-III
,” Japan Atomic Energy Agency, Oarai, Japan, No. PNC-TN9410 96-212 (in Japanese).
20.
Murakami
,
T.
,
Eguchi
,
Y.
,
Oyama
,
K.
, and
Watanabe
,
O.
,
2015
, “
Reduced-Scale Water Test of Natural Circulation for Decay Heat Removal in Loop-Type Sodium-Cooled Fast Reactor
,”
Nucl. Eng. Des.
,
288
, pp.
220
231
.
21.
Rolfo
,
S.
,
Péniguel
,
C.
,
Guillaud
,
M.
, and
Laurence
,
D.
,
2012
, “
Thermal-Hydraulic Study of a Wire-Spacer Fuel Assembly
,”
Nucl. Eng. Des.
,
243
, pp.
251
262
.
22.
Pointer
,
W. D.
,
Thomas
,
J.
,
Fanning
,
T.
,
Fischer
,
P.
,
Siegel
,
A.
,
Smith
,
J.
, and
Tokuhiro
,
A.
,
2009
, “
RANS-Based CFD Simulations of Sodium Fast Reactor Wire-Wrapped Pin Bundles
,”
International Conference on Mathematics, Computational Methods and Reactor Physics
,
New York
,
May 5–7
, p.
13
.
23.
Gajapathy
,
R.
,
Velusamy
,
K.
,
Selvaraj
,
P.
, and
Chellapandi
,
P.
,
2015
, “
CFD Investigation of Effect of Helical Wire-Wrapped Parameters on the Thermal Hydraulic Performance of 217 Fuel Pin Bundle
,”
Ann. Nucl. Energy
,
77
, pp.
498
513
.
24.
Ohshima
,
H.
, and
Imai
,
Y.
,
2017
, “
Numerical Simulation Method of Thermal-Hydraulics in Wire-Wrapped Fuel Pin Bundle of Sodium-Cooled Fast Reactor
,” FR17, Yekaterinburg, Russian Federation, June 26–29, No. IAEA-CN245-453.
You do not currently have access to this content.