The thermal stability of N, N-dimethylhydroxylamine (DMHAN) in the HNO3 solution was studied using microcalorimeter. The influence of concentration of HNO3, DMHAN, methylhydrazine (MH), atmosphere (air and nitrogen), and metals was investigated. The kinetic parameters and self-accelerating decomposition temperature (SADT) of the feed in process (stripping reagents 1BX, scouring agent 2DS, stripping reagents 2BX, and waste aqueous phase 2DW) were calculated by Advanced Kinetics and Technology Solutions (akts) thermokinetics software. The molar enthalpy of the reaction of NaNO2 with DMHAN and MH was also determined. The results show that the initial reaction temperature (T0) of DMHAN/HNO3 (HNO3: 1.5–3.0 mol/L, DMHAN: 0.05–0.8 mol/L) is increased as the acidity is reduced or the concentration of DMHAN is increased. Holding reductant MH made the induction period of the autocatalytic reaction longer. The air, nitrogen atmosphere, Fe, and the fission products (Zr, Ru) do not affect the decomposition of DMHAN, but the stainless steel made the T0 of DMHAN/HNO3 become lower. The SADT of 1BX/2DS, 2BX, and 2DW is 56 °C, 52 °C and 47 °C, respectively. The molar enthalpies of formation of the reaction of NaNO2 with DMHAN and MH are −411.3 kJ/mol, −246.0 kJ/mol, respectively.

References

References
1.
May
,
I.
,
Taylor
,
R. J.
, and
Denniss
,
I. S.
,
1999
, “
Actinide Complexation in the Purex Process
,”
Czechoslovak J. Phys.
,
49
(
1
), pp.
597
601
.
2.
Schmieieder
,
H.
, and
Petrich
,
G.
,
1989
, “
A Concept for Improved Purex-Process
,”
Radiochem. Acta
,
48
(
3–4
), pp.
181
186
.
3.
Harlow
,
D. G.
,
Felt
,
R. E.
,
Agnew
,
E. T.
,
Barney
,
G. S.
,
Mckbben
,
J. M.
,
Garber
,
R.
, and
Lewis
,
M.
,
1998
, “
Technical Report on Hydroxylamine Nitrate
,” U.S. Department of Energy, Washington, DC, accessed Jan. 21, 2019, http://www.osti.gov/biblio/1374990
4.
Wei
,
C. Y.
,
William
,
J. R.
, and
Mannan
,
M. S.
,
2006
, “
Thermal Decomposition Hazard Evaluation of Hydroxylamine Nitrate
,”
J. Hazard. Mater.
,
130
(
1–2
), pp.
163
168
.
5.
Marchenko
,
V. I.
,
Doveglazov
,
K. N.
, and
Volk
,
V. I.
,
2009
, “
Use of Redox Reagents for Stabilization of Pu and Np Valence Forms in Aqueous Reprocessing of Spent Nuclear Fuel: Chemical and Technological Aspects
,”
Radiochemistry
,
51
(
4
), pp.
329
344
.
6.
Ye
,
G. A.
,
2004
, “
Review on the Study and Application of Organic Salt-Free Reagent in PUREX Process
,”
At. Energy Sci. Technol.
,
38
(
2
), pp.
152
158
.
7.
Koltunov
,
V. S.
,
Taylor
,
R. J.
,
Baranov
,
S. M.
,
Mezhov
,
E. A.
,
Pastuschak
,
V. G.
, and
Koltunov
,
2000
, “
Acetaldoxime—A Promising Reducing Agent for Pu and Np Ions in the PUREX Process
,”
Scientific Research on the Back-End of the Fuel Cycle for the 21st Century
,
Avignon, France
,
Oct. 24–26
, p.
6
.
8.
He
,
H.
,
Ye
,
G. A.
,
Tang
,
H. B.
,
Li
,
G. L.
, and
Lin
,
R. S.
,
2014
, “
An Advanced Purex Process Based on Salt-Free Reductants
,”
Radiochim. Acta
,
102
(
1–2
), pp.
127
133
.
9.
Xiao
,
S. T.
,
Li
,
L.
,
Ye
,
G. A.
,
Luo
,
F. X.
,
Liu
,
X. C.
,
Yang
,
H.
, and
Lan
,
T.
,
2015
, “
An Improvement in APOR Process I-Uranium/Plutonium Separation Process
,”
Nucl. Sci. Tech.
,
28
(
4
), pp.
1
6
.
10.
Li
,
G. L.
,
He
,
H.
,
Hu
,
J. X.
,
Zhang
,
X. Y.
, and
Wang
,
F. D.
,
2006
, “
The Synthesis and Characterization of N,N-Dimethylhydroxylamine
,”
Chem. Reagents
,
28
(
4
), pp.
202
204
.
11.
Lizbeth
,
O. C.
,
William
,
J. R.
, and
Mannan
,
M. S.
,
2002
, “
Effect of Air in the Thermal Decomposition of 50 Mass% Hydroxylamine/Water
,”
J. Hazard. Mater.
,
95
(
1–2
), pp.
13
25
.
12.
Mieko
,
K.
,
Yasuhiro
,
F.
, and
Takayuki
,
A.
,
2003
, “
Calorimetric Behaviors of Hydroxylamine and Its Salts Caused by Fe(III)
,”
J. Loss Prev. Process Ind.
,
16
(
6
), pp.
507
512
.
13.
Iwata
,
Y.
, and
Koseki
,
H.
,
2003
, “
Decomposition of Hydroxylamine/Water Solution With Added Iron Ion
,”
J. Hazard. Mater.
,
104
(
1–3
), pp.
39
49
.
14.
Kumasaki
,
M.
,
2004
, “
Calorimetric Study on the Decomposition of Hydroxylamine in the Presence of Transition Metals
,”
J. Hazard. Mater.
,
115
(
1–3
), pp.
57
62
.
15.
Iwata
,
Y.
,
Koseki
,
H.
, and
Hosoya
,
F.
,
2003
, “
Study on Decomposition of Hydroxylamine/Water Solution
,”
J. Loss Prev. Process Ind.
,
16
(
1
), pp.
41
53
.
16.
Vyazovkin
,
S.
,
2000
, “
Computational Aspects of Kinetic Analysis—Part C: The ICTAC Kinetics Project-The Light at the End of the Tunnel
,”
Thermochim. Acta
,
355
(
1–2
), pp.
155
163
.
17.
Lu
,
Z. R.
,
1998
, “
New Advance in Thermal Analysis Kinetic
,”
China J. Inorg. Chem.
,
13
(
2
), pp.
119
126
.
18.
Rouduit
,
B.
, and
Folly
,
P.
,
2008
, “
Evaluating SADT by Advanced Kinetics-Based Simulation Approach
,”
J. Therm. Anal. Calorim.
,
93
(
1
), pp.
153
161
.
19.
Rouduit
,
B.
, and
Dermaut
,
W.
,
2008
, “
Advanced Kinetics-Based Simulation of Time to Maximum Rate Under Adiabatic Conditions
,”
J. Therm. Anal. Calorim.
,
93
(
1
), pp.
163
173
.
20.
United Nations
,
2007
, “
Recommendations on the Transport of Dangerous Goods-Manual of Tests and Criteria
,”
5th ed.
,
United Nations
,
New York
, p.
456
.
21.
Hu
,
X. D.
,
Ding
,
G. L.
, and
Liu
,
W. B.
,
2010
,
The Chemistry of Plutonium
,
Atomic Science Press
,
Beijing, China
, p.
228
.
22.
Zhang
,
S. Q.
,
Kui
,
X. F.
, and
Ye
,
G. A.
,
1993
, “
Study on Adjustment of Pu Valent State by N2O4 in Purex Process
,”
At. Energy Sci. Technol.
,
27
(
3
), pp.
130
1371
.
23.
Chang
,
S. W.
,
Zhou
,
X. M.
, and
He
,
H.
,
2015
, “
Conditioning of 1BP by Nitrous Gases
,”
J. Nucl. Radiochem.
,
37
(
6
), pp.
403
407
.
24.
Liu
,
J. P.
,
Chen
,
Z. X.
, and
Ye
,
G. A.
,
2015
, “
The Reaction Heat Released of Nitrous Acid With Hydrazine and Hydroxylamine
,”
China Nucl. Sci. Technol. Prog. Rep.
,
4
(
6
), pp.
353
361
.http://cpfd.cnki.com.cn/Article/CPFDTOTAL-EGVD201509002015.htm
You do not currently have access to this content.