Glasses have emerged as alternative materials that can be used for long-term treatment and management of radioactive waste. Specifically, glasses can be used as a matrix to immobilize the radioactive material. Within the glass industry, silicate glasses are the most widely used due to their properties and to the large knowledge existent about them. Alkaline free silicate glasses are particularly corrosion resistant. Due to the latter, rare earth aluminosilicate glasses are good candidates for actinides immobilization, especially, yttrium aluminosilicate (YAS) glasses. The crystallization kinetics of YAS glasses on heating has been already studied, and this work is focused on the effect of lutetium addition on the YAS glass crystallization kinetics. The presence of a small amount of lutetium in a YAS glass decreases the surface density of nucleation sites (Ns) by about 1 order of magnitude and significantly decreases the crystal growth rate (U). In this work, it was observed that lutetium additions on the order of 0.2 (wt %) to a YAS glass dramatically decreased Ns, for example, at 1000 °C from 1011 to 109 nuclei/m2. Additionally, U for yttrium disilicate phase decreased from (8.21 ± 0.28) μm/h to (0.54 ± 0.04) μm/h at the same temperature.

References

References
1.
Donald
,
I. W.
,
Metcalfe
,
B. L.
, and
Taylor
,
N. J.
,
1997
, “
Review. The Immobilization of High Level Radioactive Wastes Using Ceramic and Glasses
,”
J. Mater. Sci.
,
32
(
22
), pp.
5851
5887
.
2.
Ojovan
,
M. I.
, and
Lee
,
W. E.
,
2011
, “
Glassy Wasteforms for Nuclear Waste Immobilization
,”
Metall. Mater. Trans. A
,
42
, pp.
837
851
.
3.
Ojovan
,
M. I.
, and
Lee
,
W. E.
,
2005
,
An Introduction to Nuclear Waste Immobilization
,
2nd ed.
,
Elsevier Science Publisher
,
Amsterdam, The Netherlands
.
4.
Jantzen
,
C. M.
,
1986
, “
System Approach to Nuclear Waste Glass Development
,”
J. Non-Cryst. Solids
,
84
(
1–3
), pp.
215
225
.
5.
Marchi
,
J.
,
Morais
,
D.
,
Shneider
,
J.
,
Bressiani
,
J.
, and
Bressiani
,
A.
,
2005
, “
Characterization of Rare Earth Aluminosilicate Glasses
,”
J. Non-Cryst. Solids
,
351
(
10–11
), pp.
863
868
.
6.
Lemercier
,
H.
,
Rouxel
,
T.
,
Fargeot
,
D.
,
Besson
,
J. L.
, and
Piriou
,
B.
,
1996
, “
Yttrium SiAlON Glasses: Structure and Mechanical Properties—Elasticity and Viscosity
,”
J. Non-Cryst. Solids
,
201
(
1–2
), pp.
128
145
.
7.
Clayden
,
N. J.
,
Esposito
,
S.
,
Aronne
,
A.
, and
Pernice
,
P.
,
1999
, “
Solid State 27Al NMR and FTIR Study of Lanthanum Aluminosilicate Glasses
,”
J. Non-Cryst. Solids
,
258
(
1–3
), pp.
11
19
.
8.
Baghshahi
,
S.
,
Brungs
,
M.
,
Sorrell
,
C.
, and
Kim
,
H.
,
2001
, “
Surface Crystallization of Rare-Earth Aluminosilicate Glasses
,”
J. Non-Cryst. Solids
,
290
(
2–3
), pp.
208
215
.
9.
Shelby
,
J.
, and
Kohli
,
J.
,
1990
, “
Rare-Earth Aluminosilicate Glasses
,”
J. Am. Ceram. Soc.
,
73
(
1
), pp.
39
42
.
10.
Babelot
,
C.
,
2012
,
Monazite-Type Ceramics for Conditioning of Minor Actinides: Structural Characterization and Properties
, Vol.
182
,
Energy & Environment
,
Jülich, Germany
.
11.
Galunin
,
E.
,
Alba
,
M.
, and
Vidal
,
M.
,
2011
, “
Stability of Rare-Earth Disilicates: Ionic Radius Effect
,”
J. Am. Ceram. Soc.
,
94
(
5
), pp.
1568
1574
.
12.
Alba
,
M.
, and
Chain
,
P.
,
2007
, “
Persistence of Lutetium Disilicate
,”
Appl. Geochem.
,
22
(
1
), pp.
192
201
.
13.
Arita
,
I. H.
,
Wilkinson
,
D. S.
, and
Purdy
,
G. R.
,
1992
, “
Crystallization of Yttria-Alumina-Silica Glasses
,”
J. Am. Ceram. Soc.
,
75
(
12
), pp.
3315
3320
.
14.
Hyatt
,
M. J.
, and
Day
,
D. E.
,
1987
, “
Glass Properties in the Yttria-Alumina-Silica System
,”
J. Am. Ceram. Soc.
,
70
(
10
), pp.
C-283
287
.
15.
Sadiki
,
N.
,
Coutures
,
J. P.
,
Fillet
,
C.
, and
Dussossoy
,
J. L.
,
2006
, “
Crystallization of Lanthanum and Yttrium Aluminosilicate Glasses
,”
J. Nucl. Mater.
,
348
(
1–2
), pp.
70
78
.
16.
Lago
,
D. C.
, and
Prado
,
M. O.
,
2013
, “
Crystallization of Yttrium and Samarium Aluminosilicate Glasses
,”
Phys. Procedia
,
48
, pp.
10
16
.
17.
Prado
,
M.
,
Lago
,
D.
, and
Rodríguez
,
D.
,
2012
, “
Sintering Kinetics of Yttrium Aluminosilicate Glasses
,”
MRS Online Proc.
,
1475
, p.
imrc11-1475-nw35-o49
.
18.
Lago
,
D.
,
Garcés
,
D.
, and
Prado
,
M.
,
2012
, “
Crystallization of Yttrium Aluminosilicate Glass for Nuclear Waste Immobilization
,”
MRS Online Proc.
,
1475
, p.
imrc11-1475-nw35-p13
.
19.
Alba
,
M. D.
, and
Chain
,
P.
,
2005
, “
Interaction Between Lu Cations and 2:1 Aluminosilicates Under Hydrothermal Treatment
,”
Clay Miner.
,
53
(
1
), pp.
39
46
.
20.
Chapman
,
N. A.
, and
Smellie
,
J. A. T.
,
1986
, “
Introduction and Summary of Workshop
,”
Chem. Geol.
,
55
(
3–4
), pp.
167
173
.
21.
Leturcq
,
P.
,
Schmidt
,
D.
,
Madejová
,
J.
, and
Cicel
,
B.
,
1999
, “
Initial and Long-Term Dissolution Rates of Aluminosilicate Glasses Enriched With Ti, Zr and Nd
,”
Chem. Geol.
,
160
(
1–2
), pp.
39
62
.
22.
Ehrhardt
,
G. J.
, and
Day
,
D. E.
,
1987
, “
Therapeutic Use of 90Y Microspheres
,”
Int. J. Radiat. Appl. Instrum., Part B
,
14
(
3
), pp.
233
242
.
23.
Prado
,
M. O.
,
Ferreira
,
E. B.
, and
Zanotto
,
E. D.
,
2006
, “
Sintering Kinetics of Crystallizing Glass Particles. A Review
,”
Melt Chemistry, Relaxation, and Solidification Kinetics of Glasses
, Vol. 170, Wiley, Hoboken, NJ, pp.
163
179
.
24.
Raymond
,
K.
, and
Szigethy
,
G.
,
2008
, “
On the Suitability of Lanthanides as Actinide Analogs
,”
MRS Online Proc.
, pp.
1
6
.
You do not currently have access to this content.