During operation of light water reactors, the Zircaloy fuel rod cladding is susceptible for hydrogen uptake. When the local solubility limit of hydrogen in Zircaloy is reached, additional hydrogen precipitates as zirconium hydride, which affects the ductility of the fuel rod cladding. Especially, the radially aligned hydrides enhance embrittlement, while circumferential (azimuthal) hydrides have a less detrimental effect. In this work, the influence of high temperatures during the dry storage period on hydride dissolution and precipitation is demonstrated. Therefore, in a descriptive example scenario being discussed, the simulation of a limited heat removal from the cask will heat up the dry storage cask for days and causes dissolution of hydrides in the cladding. Depending on the threshold stress for reorientation, the following cooldown results on different hydride precipitation behavior. The threshold stress leads to an enhanced or delayed precipitation of radial hydrides. The GRS fuel rod code TESPA-ROD is equipped with a new model for hydrogen solubility and applied to long-term storage transients. In this article, hydride refers to zirconium hydrides formed inside the fuel rod cladding.

References

References
1.
Murty
,
K. L.
, ed.,
2013
,
Materials Ageing and Degradation in Light Water Reactors
,
1st ed.
,
Elsevier
,
Sawston, UK
, p.
440
.
2.
Adamson
,
R.
,
Garzarolli
,
F.
,
Patterson
,
C.
,
Rudling
,
P.
,
Strasser
,
A.
,
Coleman
,
K.
, and
Lemaignan
,
C.
,
2011
, “
ZIRAT16 Annual Report
,” ANT International, Mölnlycke, Sweden, Report.
3.
EPRI
,
2011
, “
Extended Storage Collaboration Program (ESCP) Progress Report and Review of Gap Analysis
,” Electric Power Research Institute, Palo Alto, CA, Technical Report No.
1022914
.https://www.epri.com/#/pages/product/1022914/?lang=en-US
4.
IAEA
,
2015
, “
Spent Fuel Performance Assessment and Research
,” International Atomic Energy Agency, Vienna, Austria, Report No. IAE-TECDOC-1771.
5.
Peisl
,
H.
,
1981
, “
Wasserstoff in Metallen
,”
Phys. Blätter, Dtsch. Phys. Ges.
,
37
(
7
), pp.
209
213
(in German).
6.
Erickson
,
W. H.
, and
Hardie
,
D.
,
1964
, “
Hydrogen Embrittlement of Some Zirconium Alloys
,”
J. Nucl. Mater.
,
11
(
3
), pp.
341
343
.
7.
Pan
,
Z. L.
,
Ritchie
,
I. G.
, and
Puls
,
M. P.
,
1996
, “
The Terminal Solid Solubility of Hydrogen and Deuterium in Zr-2.5 Nb Alloys
,”
J. Nucl. Mater.
,
228
(
2
), pp.
227
237
.
8.
Kearns
,
J. J.
,
1967
, “
Terminal Solubility and Partitioning of Hydrogen in the Alpha Phase of Zirconium, Zircaloy-2 and Zircaloy-4
,”
J. Nucl. Mater.
,
22
(
3
), pp.
292
303
.
9.
McMinn
,
A.
,
Darby
,
E. C.
, and
Shofield
,
J. S.
,
2000
, “
The Terminal Solid Solubility of Hydrogen in Zirconium Alloys
,”
12th International Symposium on Zirconium in the Nuclear Industry
,
Toronto, ON, Canada
,
June 15–18
, Paper No. ASTM STP 1354.
10.
Une
,
K.
,
Ishimoto
,
S.
,
Etoh
,
Y.
,
Ito
,
K.
,
Ogata
,
K.
,
Baba
,
T.
,
Kaminmura
,
K.
, and
Kobayashi
,
Y.
,
2009
, “
The Terminal Solid Solubility of Hydrogen in Irradiated Zircaloy-2 and Microscopic Modeling of Hydride Behavior
,”
J. Nucl. Mater.
,
389
(1), pp. 127–136
11.
Colas
,
K.
,
2012
, “
Fundamental Experiments on Hydride Reorientation in Zircaloy
,”
Ph.D. thesis
, Pennsylvania State University, University Park, PA.https://etda.libraries.psu.edu/catalog/15214
12.
Glazoff
,
M.
,
2013
, “
Modeling of Some Physical Properties of Zirconium Alloys for Nuclear Applications in Support of UFD Campaign
,” Idaho National Lab, Idaho Falls, ID, Report No.
INL/EXT-13-29581
.https://inldigitallibrary.inl.gov/sites/sti/sti/5806474.pdf
13.
Kaufholz
,
P.
,
Stuke
,
M.
,
Boldt
,
F.
, and
Peridis
,
M.
,
2018
, “
Influence of Kinetic Effects on Terminal Solid Solubility of Hydrogen in Zirconium Alloys
,”
J. Nucl. Mater.
,
554
, pp.
277
281
.
14.
Denisov
,
E. A.
,
Kompaniets
,
T. N.
, and
Voyt
,
A. P.
,
2018
, “
Kinetics of the Isothermal Decomposition of Zirconium Hydride: Terminal Solid Solubility for Precipitation and Dissolution
,”
J. Nucl. Mater.
,
503
, pp.
195
197
.
15.
Lacroix
,
E.
,
Motta
,
A. T.
, and
Almer
,
J. D.
,
2018
, “
Experimental Determination of Zirconium Hydride Precipitation and Dissolution in Zirconium Alloy
,”
J. Nucl. Mater.
,
509
, pp.
162
167
.
16.
Shewmon
,
P. G.
,
1963
, “
Diffusion in Solids
,”
Carnegie Institute of Technology
,
McGraw-Hill
,
New York
, p.
203
.
17.
Sawatzky
,
A.
, and
Vogt
,
E.
,
1961
, “
Mathematics of the Thermal Diffusion of Hydrogen in Zircaloy-2
,” Atomic Energy of Canada Limited, Chalk River, ON, Canada, Report No. AECL-1411; CRT-1049.
18.
Cinbiz
,
M. N.
,
Koss
,
D. A.
, and
Motta
,
A. T.
,
2015
, “
The Effect of Stress Biaxiality on Hydride Reorientation Threshold Stress
,”
TopFuel Conference
,
Zurich, Switzerland
,
Sept. 13–17
.
19.
GRS
,
2018
, “
Fuel Rod Code TESPA-ROD Description
,” Gesellschaft für Anlagen- und Reaktorsicherheit, Garching, Germany, accessed Feb. 18, 2019, https://www.grs.de/en/simulation-codes/tespa-rod
20.
Sonnenburg
,
H. G.
, and
Boldt
,
F.
,
2017
, “
Brennstabverhalten im Betrieb, bei Störfällen und in der Langzeitlagerung
,” Gesellschaft für Anlagen- und Reaktorsicherheit, Cologne, Germany, Report No. GRS-464 (in German).
21.
Sonnenburg
,
H. G.
,
2018
, “
TESPA-ROD Code Prediction of the Fuel Rod Behaviour During Long-Term Storage
,”
49th Annual Meeting of Nuclear Technology (AMNT)
,
Berlin, Germany
,
May 29–30
, pp.
347
377
.
22.
DOE
,
2018
, “
Three Dimensional Fuel Pin Model Validation by Prediction of Hydrogen Distribution in Cladding and Comparison With Experiment
,” DOE Nuclear Energy University Program (NEUP), U.S. Department of Energy, Idaho Falls, ID, Project No. 13-5180.
23.
Sonnenburg
,
H. G.
, and
Boldt
,
F.
,
2018
, “
Dynamic Hydride Precipitation During LOCA Quench Process Can Significantly Preserve Cladding's Ductility
,”
TopFuel Reactor Fuel Performance Meeting
,
Prague, Czech Republic
,
Sept. 30–Oct. 4
, Paper No. A0187.
24.
Courty
,
O.
,
Motta
,
A. T.
, and
Hales
,
J. D.
,
2014
, “
Modeling and Simulation of Hydrogen Behaviour in Zircaloy-4 Fuel Cladding
,”
J. Nucl. Mater.
,
452
(
1–3
), pp.
311
320
.
25.
Aomi
,
M.
,
Baba
,
T.
,
Miyashita
,
T.
,
Kaminmura
,
K.
,
Yasuda
,
T.
,
Shinohara
,
Y.
, and
Takeda
,
T.
,
2008
, “
Evaluation of Hydride Reorientation Behavior and Mechanical Properties for High-Burnup Fuel-Cladding Tubes in Interim Dry Storage
,”
J. ASTM Int.
,
5
(
9
), pp.
1
21
.https://www.astm.org/DIGITAL_LIBRARY/JOURNALS/JAI/PAGES/JAI101262.htm
26.
Stehle
,
H.
,
Kaden
,
W.
, and
Manzel
,
R.
,
1975
, “
External Corrosion of Cladding in PWRs
,”
Nucl. Eng. Des.
,
33
(
2
), pp.
155
169
.
27.
Singh
,
R. N.
,
Mikin
,
R. L.
,
Dey
,
G. K.
, and
Stahle
,
P.
,
2006
, “
Influence of Temperature on Threshold Stress for Reorientation of Hydrides and Residual Stress Variation Across Thickness of Zr-2.6Nb Alloy Pressure Tube
,”
J. Nucl. Mater.
,
359
(
3
), pp.
208
219
.
You do not currently have access to this content.