The hydrogen emission of zirconium hydride at high temperature is a challenging issue for many researchers. The hydrogen emission content of zirconium hydride pins should be evaluated to confirm the application feasibility. The comparison of theory analysis and experiment data indicated that Richardson's law could offer a conservative result for calculating the hydrogen emission content of zirconium hydride pins at high temperature. Furthermore, the methods of preventing hydrogen loss should be developed for the purpose of extending the work temperature or time. The results showed that a ZrO2 layer prepared for zirconium hydride could not prevent hydrogen loss after exposure at 650 °C in an inert environment and ZrO2 transformed into Zr3O gradually due to the opposite movement of hydrogen and oxygen. Finally, a further improvement to prevent hydrogen loss was developed. The zirconium hydride with a ZrO2 layer in the cladding of He+CO2 exhibited no significant reduction of hydrogen content. It is helpful to prevent the hydrogen loss by increasing the oxygen potential on the outside of ZrO2 layer.

References

References
1.
Mueller
,
W. M.
,
Blackledge
,
J. P.
, and
Libowitz
,
G. G.
,
1968
, “
Hydrides in Nuclear Reactor Applications
,”
Metal Hydrides
,
Academic Press
, New York, pp.
21
50
.
2.
Tsuchiya
,
B.
,
Huang
,
J.
,
Konashi
,
K.
,
Teshigawara
,
M.
, and
Yamawaki
,
M.
,
2001
, “
Thermophysical Properties of Zirconium Hydride and Uranium-Zirconium Hydride
,”
J. Nucl. Mater.
,
289
(
3
), pp.
329
333
.
3.
Terrani
,
K. A.
,
Balooch
,
M.
,
Wongsawaeng
,
D.
,
Jaiyen
,
S.
, and
Olander
,
D. R.
,
2010
, “
The Kinetics of Hydrogen Desorption From and Adsorption on Zirconium Hydride
,”
J. Nucl. Mater.
,
397
(
1–3
), pp.
61
68
.
4.
Ponomarev-Stepnoi
,
N. N.
,
Bubelev
,
V. G.
,
Glushkov
,
E. S.
,
Garin
,
V. P.
,
Kukharkin
,
N. E.
,
Kompaniets
,
G. V.
,
Nosov
,
V. I.
, and
Chunyaev
,
E. I.
,
2007
, “
Estimation of the Hydrogen Emission From a Hydride Moderator by Measuring the Reactivity and Using Mathematical Statistics
,”
At. Energy
,
102
(
2
), pp.
87
93
.
5.
Olander
,
D.
,
Greenspan
,
E.
,
Garkisch
,
H. D.
, and
Petrovic
,
B.
,
2009
, “
Uranium–Zirconium Hydride Fuel Properties
,”
Nucl. Eng. Des.
,
239
(
8
), pp.
1406
1424
.
6.
Simnad
,
M. T.
,
1980
, “
The U-ZrHx Alloy: Its Properties and Use in TRIGA Fuel
,”
Nucl. Eng. Des.
,
64
(
3
), pp.
403
422
.
7.
Forcey
,
K. S.
,
Ross
,
D. K.
, and
Simpson
,
J. C. B.
,
1988
, “
Hydrogen Transport and Solubility in 316 L and 1.4914 Steels for Fusion Reactor Applications
,”
J. Nucl. Mater.
,
160
(
2–3
), pp.
117
124
.
8.
Michael
,
V. G.
,
Akira
,
T.
,
Sergey
,
N. R.
, and
Piyush
,
S.
,
2014
, “
Oxidation and Hydrogen Uptake in Zirconium, Zircaloy-2 and Zircaloy-4: Computational Thermodynamics and Ab Initio Calculations
,”
J. Nucl. Mater.
,
444
(
1–3
), pp.
65
75
.
You do not currently have access to this content.