In this study, we numerically evaluated the performance of a steam methane reforming (SMR) reactor heated using high-temperature helium for hydrogen production. The result showed that with an increase in the reactant gas inlet velocity, the temperature at the same reactor length position decreased. The maximum gas temperature difference at the gas collection chamber reached approximately 55 °C. The outlet temperature difference increased to 35 °C when the inlet temperature increased from 370 °C to 570 °C. A higher inlet temperature did not have a positive effect on the system's thermal efficiency. The methane conversion rate increased by 68%, and the hydrogen production rate increased by 55%, when the helium inlet velocity increased from 2 m/s to 22 m/s. When the helium inlet temperature increased by 200 °C, the highest temperature of the reactant gas increased by 132 °C. In the SMR for hydrogen production using a high-temperature gas-cooled reactor (HTGR), low reactant-gas inlet velocity, suitable inlet temperature, high inlet velocity, and a high HTGR outlet temperature of helium were preferable.

References

References
1.
Duffey
,
R. B.
,
2009
, “
Nuclear Production of Hydrogen: When Worlds Collide
,”
Int. J. Energy Res.
,
33
(
2
), pp.
126
134
.
2.
Wang
,
F.
,
Zhang
,
D. W.
,
Zheng
,
S. W.
, and
Qi
,
B.
,
2010
, “
Characteristic of Cold Sprayed Catalytic Coating for Hydrogen Production Through Fuel Reforming
,”
Int. J. Hydrogen Energy
,
35
(
15
), pp.
8206
8215
.
3.
Wang
,
G. Q.
,
Wang
,
F.
,
Li
,
L. J.
, and
Zhang
,
G. F.
,
2013
, “
Experiment of Catalyst Activity Distribution Effect on Methanol Steam Reforming Performance in the Packed Bed Plate-Type Reactor
,”
Energy
,
51
, pp.
267
272
.
4.
Wang
,
G. Q.
,
Wang
,
F.
,
Li
,
L. J.
, and
Zhang
,
G. F.
,
2013
, “
A Study of Methanol Steam Reforming on Distributed Catalyst Bed
,”
Int. J. Hydrogen Energy
,
38
(
25
), pp.
10788
10794
.
5.
Wang
,
F.
,
Zhou
,
J.
,
Wang
,
G. Q.
, and
Zhou
,
X. J.
,
2012
, “
Simulation on Thermoelectric Device With Hydrogen Catalytic Combustion
,”
Int. J. Hydrogen Energy
,
37
(
1
), pp.
884
888
.
6.
Wang
,
F.
,
Cao
,
Y. D.
, and
Wang
,
G. Q.
,
2015
, “
Thermoelectric Generation Coupling Methanol Steam Reforming Characteristic in Microreactor
,”
Energy
,
80
, pp.
642
653
.
7.
Klimova
,
V.
,
Pakhaluev
,
V.
, and
Shcheklein
,
S.
,
2016
, “
On the Problem of Efficient Production of Hydrogen Reducing Gases for Metallurgy Utilizing Nuclear Energy
,”
Int. J. Hydrogen Energy
,
41
(
5
), pp.
3320
3325
.
8.
Wang
,
F.
,
Zhou
,
J.
, and
Wang
,
G. Q.
,
2012
, “
Transport Characteristic Study of Methane Steam Reforming Coupling Methane Catalytic Combustion for Hydrogen Production
,”
Int. J. Hydrogen Energy
,
37
(
17
), pp.
13013
13021
.
9.
Wang
,
W. J.
,
2014
, “
Thermodynamic and Experimental Aspects on Chemical Looping Reforming of Ethanol for Hydrogen Production Using a Cu-Based Oxygen Carrier
,”
Int. J. Energy Res.
,
38
(
9
), pp.
1192
1200
.
10.
Wang
,
W. J.
, and
Cao
,
Y. Y.
,
2013
, “
A Combined Thermodynamic and Experimental Study on Chemical-Looping Ethanol Reforming With Carbon Dioxide Capture for Hydrogen Generation
,”
Int. J. Energy Res.
,
37
(
1
), pp.
25
34
.
11.
Wang
,
F.
,
Li
,
L. J.
, and
Liu
,
Y. Y.
,
2017
, “
Effects of Flow and Operation Parameters on Methanol Steam Reforming in Tube Reactor Heated by Simulated Waste Heat
,”
Int. J. Hydrogen Energy
,
42
(
42
), pp.
26270
26276
.
12.
Wang
,
W. J.
,
Wang
,
Y. Q.
, and
Liu
,
Y.
,
2011
, “
Production of Hydrogen by Ethanol Steam Reforming Over Nickel–Metal Oxide Catalysts Prepared Via Urea–Nitrate Combustion Method
,”
Int. J. Energy Res.
,
35
(
6
), pp.
501
506
.
13.
Yilmaz
,
F.
,
Balta
,
M. T.
, and
Selbaş
,
R.
,
2016
, “
A Review of Solar Based Hydrogen Production Methods
,”
Renewable Sustainable Energy Rev.
,
56
, pp.
171
178
.
14.
Ghandehariun
,
S.
, and
Kumar
,
A.
,
2016
, “
Life Cycle Assessment of Wind-Based Hydrogen Production in Western Canada
,”
Int. J. Hydrogen Energy
,
41
(
22
), pp.
9696
9704
.
15.
Bicer
,
Y.
, and
Dincer
,
I.
,
2016
, “
Development of a New Solar and Geothermal Based Combined System for Hydrogen Production
,”
Sol. Energy
,
127
, pp.
269
284
.
16.
Fan
,
J. M.
,
Zhu
,
L.
,
Jiang
,
P.
,
Li
,
L. L.
, and
Liu
,
H. M.
,
2016
, “
Comparative Exergy Analysis of Chemical Looping Combustion Thermally Coupled and Conventional Steam Methane Reforming for Hydrogen Production
,”
J. Cleaner Prod.
,
131
, pp.
247
258
.
17.
Torjman
,
M.
, and
Shaaban
,
H.
,
1998
, “
Nuclear Energy as a Primary Source for a Clean Hydrogen Energy System
,”
Energy Convers. Manage.
,
39
(
1–2
), pp.
27
32
.
18.
Kato
,
Y.
,
Otsuka
,
K. I.
, and
Ryu
,
J.
,
2008
, “
Carbon Recycle Nuclear Hydrogen Carrier System for Transportation Field
,”
Prog. Nucl. Energy
,
50
(
2–6
), pp.
417
421
.
19.
Forsberg
,
C. W.
,
2003
, “
Hydrogen, Nuclear Energy, and the Advanced High-Temperature Reactor
,”
Int. J. Hydrogen Energy
,
28
(
10
), pp.
1073
1081
.
20.
Wang
,
F.
,
Cao
,
Y. D.
, and
Zhou
,
J.
,
2015
, “
Thermodynamic Analysis of High-Temperature Helium Heated Fuel Reforming for Hydrogen Production
,”
Int. J. Energy Res.
,
39
(
3
), pp.
418
432
.
21.
Belghit
,
A.
,
Gordillo
,
E. D.
, and
Issami
,
S. E.
,
2009
, “
Coal Steam-Gasification Model in Chemical Regime to Produce Hydrogen in a Gas–Solid Moving Bed Reactor Using Nuclear Heat
,”
Int. J. Hydrogen Energy
,
34
(
15
), pp.
6114
6119
.
22.
Verfondern
,
K.
, and
Lensa
,
W. V.
,
2005
, “
Past and Present Research in Europe on the Production of Nuclear Hydrogen With HTGR
,”
Prog. Nucl. Energy
,
47
(
1–4
), pp.
472
483
.
23.
Nariaki
,
S.
,
Seiji
,
K.
,
Kaoru
,
O.
, and
Kazuhiko
,
K.
,
2007
, “
Conceptual Design of Hydrogen Production System With Thermochemical Water-Splitting Iodine–Sulphur Process Utilizing Heat From the High-Temperature Gas-Cooled Reactor HTTR
,”
Int. J. Hydrogen Energy
,
32
(
17
), pp.
4160
4169
.
24.
Seiji
,
K.
,
Shinji
,
K.
,
Ryutaro
,
H.
,
Kaoru
,
O.
,
Mikihiro
,
N.
, and
Shin-ichi
,
N.
,
2007
, “
Flowsheet Study of the Thermochemical Water-Splitting Iodine–Sulfur Process for Effective Hydrogen Production
,”
Int. J. Hydrogen Energy
,
32
(
4
), pp.
489
496
.
25.
Hiroyuki
,
S.
,
Shinji
,
K.
,
Nariaki
,
S.
,
Hirofumi
,
O.
,
Yukio
,
T.
, and
Kazuhiko
,
K.
,
2009
, “
Development of an Evaluation Method for the HTTR-IS Nuclear Hydrogen Production System
,”
Ann. Nucl. Energy
,
36
(
7
), pp.
956
965
.
26.
Youngjoon
,
S.
,
Chang
,
J.
,
Lee
,
T.
,
Lee
,
K.
, and
Kim
,
Y.
,
2013
, “
A Cooling System for the Secondary Helium Loop in VHTR-Based SI Hydrogen Production Facilities
,”
Int. J. Hydrogen Energy
,
38
(
14
), pp.
6182
6189
.
27.
Hiroyuki
,
S.
,
Hirofumi
,
O.
,
Shigeaki
,
N.
,
Yukio
,
T.
, and
Kazuhiko
,
K.
,
2014
, “
Safety Design Consideration for HTGR Coupling With Hydrogen Production Plant
,”
Prog. Nucl. Energy
,
82
, pp.
46
52
.
28.
Rosen
,
M. A.
,
Naterer
,
G. F.
,
Chukwu
,
C. C.
,
Sadhankar
,
R.
, and
Suppiah
,
S.
,
2012
, “
Nuclear-Based Hydrogen Production With a Thermochemical Copper–Chlorine Cycle and Supercritical Water Reactor: Equipment Scale-Up and Process Simulation
,”
Int. J. Energy Res.
,
36
(
4
), pp.
456
465
.
29.
Orhan
,
M. F.
,
Ibrahim
,
D.
, and
Rosen
,
M. A.
,
2012
, “
Investigation of an Integrated Hydrogen Production System Based on Nuclear and Renewable Energy Sources: A New Approach for Sustainable Hydrogen Production Via Copper–Chlorine Thermochemical Cycles
,”
Int. J. Energy Res.
,
36
(
15
), pp.
1388
1394
.
30.
Ryland
,
D. K.
,
Li
,
H.
, and
Sadhankar
,
R. R.
,
2007
, “
Electrolytic Hydrogen Generation Using CANDU Nuclear Reactors
,”
Int. J. Energy Res.
,
31
(
12
), pp.
1142
1155
.
31.
Fujiwara
,
S.
,
Kasai
,
S.
,
Yamauchi
,
H.
,
Yamada
,
K.
,
Makino
,
S.
,
Matsunaga
,
K.
,
Yoshino
,
M.
,
Kameda
,
T.
,
Ogawa
,
T.
,
Momma
,
S.
, and
Hoashi
,
E.
,
2008
, “
Hydrogen Production by High Temperature Electrolysis With Nuclear Reactor
,”
Prog. Nucl. Energy
,
50
(
2–6
), pp.
422
426
.
32.
Elder
,
R.
, and
Allen
,
R.
,
2009
, “
Nuclear Heat for Hydrogen Production: Coupling a Very High/High Temperature Reactor to a Hydrogen Production Plant
,”
Prog. Nucl. Energy
,
51
(
3
), pp.
500
525
.
33.
Harvego
,
E. A.
,
McKellar
,
M. G.
,
O'Brien
,
J. E.
, and
Herring
,
J. S.
,
2009
, “
Parametric Evaluation of Large-Scale High-Temperature Electrolysis Hydrogen Production Using Different Advanced Nuclear Reactor Heat Sources
,”
Nucl. Eng. Des.
,
239
(
9
), pp.
1571
1580
.
34.
Yu
,
B.
,
Zhang
,
W. Q.
,
Xu
,
J. M.
, and
Chen
,
J.
,
2010
, “
Status and Research of Highly Efficient Hydrogen Production Through High Temperature Steam Electrolysis at INET
,”
Int. J. Hydrogen Energy
,
35
(
7
), pp.
2829
2835
.
35.
Gorensek
,
M. B.
,
2011
, “
Hybrid Sulfur Cycle Flow Sheets for Hydrogen Production Using High-Temperature Gas-Cooled Reactors
,”
Int. J. Hydrogen Energy
,
36
(
20
), pp.
12725
12741
.
36.
Aumeier
,
S.
,
Cherry
,
R.
,
Boardman
,
R.
, and
Smith
,
J.
,
2011
, “
Nuclear Hybrid Energy Systems: Imperatives, Prospects and Challenges
,”
Energy Procedia
,
7
, pp.
51
54
.
37.
Dincer
,
I.
, and
Balta
,
M. T.
,
2011
, “
Potential Thermochemical and Hybrid Cycles for Nuclear-Based Hydrogen Production
,”
Int. J. Energy Res.
,
35
(
2
), pp.
123
137
.
38.
Ohashi
,
H.
,
Inaba
,
Y.
,
Nishihara
,
T.
,
Inagaki
,
Y.
,
Takeda
,
T.
,
Hayashi
,
K.
,
Katanishi
,
S.
,
Takada
,
S.
,
Ogawa
,
M.
, and
Shiozawa
,
S.
,
2004
, “
Performance Test Results of Mock-Up Test Facility of HTTR Hydrogen Production System
,”
J. Nucl. Sci. Technol.
,
41
(
3
), pp.
385
392
.
39.
Inaba
,
Y.
,
Nishihara
,
T.
,
Groethe
,
M. A.
, and
Nitta
,
Y.
,
2004
, “
Study on Explosion Characteristics of Natural Gas and Methane in Semi-Open Space for the HTTR Hydrogen Production System
,”
Nucl. Eng. Des.
,
232
(
1
), pp.
111
119
.
40.
Verfondern
,
K.
, and
Nishihara
,
T.
,
2005
, “
Safety Aspects of the Combined HTTR/Steam Reforming Complex for Nuclear Hydrogen Production
,”
Prog. Nucl. Energy
,
47
(
1–4
), pp.
527
534
.
41.
Inaba
,
Y.
,
Ohashi
,
H.
,
Nishihara
,
T.
,
Sato
,
H.
,
Inagaki
,
Y.
,
Takeda
,
T.
,
Hayashi
,
K.
, and
Takada
,
S.
,
2005
, “
Study on Control Characteristics for HTTR Hydrogen Production System With Mock-Up Test Facility- System Controllability Test for Fluctuation of Chemical Reaction
,”
Nucl. Eng. Des.
,
235
(
1
), pp.
111
121
.
42.
Ohashi
,
H.
,
Inaba
,
Y.
,
Nishihara
,
T.
,
Takeda
,
T.
,
Hayashi
,
K.
,
Takada
,
S.
, and
Inagaki
,
Y.
,
2006
, “
Development of Control Technology for HTTR Hydrogen Production System With Mock-Up Test Facility: System Controllability Test for Loss of Chemical Reaction
,”
Nucl. Eng. Des.
,
236
(
13
), pp.
1396
1410
.
43.
Yin
,
H. Q.
,
Jiang
,
S. Y.
, and
Zhang
,
Y. J.
,
2006
, “
Numerical Analysis of Steam Reformer Steam Methane Reforming Hydrogen Production System Connected with High Temperature Gas Cooled Reactor
,”
Nucl. Power Eng.
,
27
(
3
), pp.
102
107
(in Chinese).
44.
Yin
,
H. Q.
,
Jiang
,
S. Y.
, and
Zhang
,
Y. J.
,
2006
, “
Initial Study Steam Reformer High-Temp. Gas-Cooled Reactor Powered Steam Methane Reforming Hydrogen Production System
,”
Energy Sci. Technol.
,
40
(
4
), pp.
406
410
(in Chinese).
45.
Yin
,
H. Q.
,
Jiang
,
S. Y.
, and
Zhang
,
Y. J.
,
2007
, “
Numerical Analysis of Performance Steam Reformer Methane Reforming Hydrogen Production System Connected With High-Temperature Gas-Cooled Reactor
,”
Energy Sci. Technol.
,
41
(
1
), pp.
69
73
(in Chinese).
46.
Khorasanov
,
G. L.
,
Kolesov
,
V. V.
, and
Korobeynikov
,
V. V.
,
2015
, “
Concerning Hydrogen Production Based on Nuclear Technologies
,”
Nucl. Energy Technol.
,
1
(
2
), pp.
126
129
.
47.
Woo
,
T. H.
,
2014
, “
Modified Fuzzy Algorithm Based Safety Analysis of Nuclear Energy for Sustainable Hydrogen Production in Climate Change Prevention
,”
Int. J. Electr. Power Energy Syst.
,
61
, pp.
192
196
.
48.
Wang
,
F.
,
Qi
,
B.
,
Wang
,
G. Q.
, and
Li
,
L. J.
, “
Methane Steam Reforming: Kinetics and Modeling Over Coating Catalyst in Micro-Channel Reactor
,”
Int. J. Hydrogen Energy
,
38
(
14
), pp.
5693
5704
.
This content is only available via PDF.
You do not currently have access to this content.