The choice of materials is of great concern in the construction of Gen IV supercritical water reactors (SCWR), particularly the fuel cladding, due to the harsh environment of elevated temperatures and pressures. A material's performance under simulated conditions must be evaluated to support proper material selection by designers. In this study, aluminide and Cr-modified aluminide coated 304, as well as bare stainless steel 304 as a reference material, were tested in supercritical water (SCW) at 700 °C and 25 MPa for 1000 h. The results showed that all three samples experienced weight loss. However, the aluminide coated 304 had 20 to 40 times less weight loss compared to Cr-modified aluminide coated and bare stainless steel 304 specimens, respectively. Based on scanning electron microscope/energy dispersive X-ray spectroscopy (SEM/EDS) and X-ray diffraction (XRD) analysis results, spinel and hematite Fe2O3 formed on bare 304 after 1000 h in SCW while alumina was observed on both coated specimens, i.e., aluminide and Cr-modified aluminide surfaces. Oxide spallation was observed on the bare 304 and Cr-modified aluminide surface, contributing to a larger weight loss. Based on the results from this study, pure aluminide coating with Al content of 10–11 wt % demonstrated superior performance than bare 304 and Cr-modified aluminide coated 304.

References

References
1.
United Nations Department of Economic and Social
,
2004
, “
World Population to 2300
,” United Nations Department of Economic and Social, New York.
2.
U.S. DOE Nuclear Energy Research Advisory Committee and Gen IV International Forum (GIF)
,
2002
, “
A Technology Roadmap for Generation IV Nuclear Energy System
,” U.S. Department of Energy, Washington, DC, Report No. GIF 002-00.
3.
Schulenberg
,
T.
,
Matsui
,
H.
,
Leung
,
L.
, and
Sedov
,
A.
,
2012
, “
Supercritical Water Cooled Reactors
,”
GIF Symposium Proceedings and Annual Report
, San Diego, CA.
4.
Yetisir
,
M.
,
Gaudet
,
M.
, and
Rhodes
,
D.
,
2013
, “
Development and Integration of Canadian SCWR Concept With Counter-Flow Fuel Assembly
,” Sixth International Symposium on Supercritical Water-Cooled Reactors (ISSCWR-6), Shenzhen, China, Mar. 3–7, Paper ISSCWR6-13059.
5.
Klueh
,
R.
,
2005
, “
Elevated Temperature Ferritic and Martensitic Steels and Their Application to Future Nuclear Reactors
,”
Int. Mater. Rev.
,
50
, pp.
287
310
.
6.
Zhang
,
L.
,
Zhu
,
F.
,
Bao
,
Y.
, and
Tang
,
R.
,
2010
, “
Corrosion Tests of Candidate Fuel Cladding and Reactor Internal Structural Materials
,”
Second Canada-China Joint Workshop on Supercritical Water-Cooled Reactors
, Toronto, ON, Canada, Apr. 25–28.
7.
Allen
,
T.
,
Chen
,
Y.
,
Ren
,
X.
,
Sridhara
,
K.
,
Tan
,
L.
,
Was
,
G. S.
,
West
,
E.
, and
Guzonas
,
D.
,
2012
, “
Material Performances in Supercritical Water
,”
Comprehensive Nuclear Materials
,
Elsevier
,
Amsterdam, The Netherlands
, pp.
279
326
.
8.
Greenwood
,
L.
,
1983
, “
A New Calculation of Thermal Neutron Damage and Helium Production in Nickel
,”
J. Nucl. Mater.
,
115
(
2–3
), pp.
137
142
.
9.
Was
,
G.
,
Ampornrat
,
P.
,
Gupta
,
G.
,
Teysseyre
,
S.
,
West
,
E.
,
Allen
,
T.
,
Sridharan
,
K.
,
Tan
,
L.
,
Chen
,
Y.
,
Ren
,
X.
, and
Pister
,
C.
,
2007
, “
Corrosion and Stress Corrosion Cracking in Supercritical Water
,”
J. Nucl. Mater.
,
371
(
1–3
), pp.
176
201
.
10.
Murty
,
K.
, and
Charit
,
I.
,
2008
, “
Structural Materials for Gen-IV Nuclear Reactor: Challenges and Opportunities
,”
J. Nucl. Mater.
,
383
(
1–2
), pp.
189
195
.
11.
Nakazono
,
Y.
,
Iwai
,
T.
, and
Abe
,
H.
,
2010
, “
General Corrosion Properties of Modified PNC1520 Austenitic Stainless Steel in Supercritical Water as Fuel Cladding Candidate Material for Supercritical Water Reactor
,”
J. Phys. Conf. Ser.
,
215
, p.
012094
.
12.
Peraldi
,
R.
, and
Pint
,
B.
,
2004
, “
Effect of Ni and Cr Contents on the Oxidation Behaviour of Ferritic and Austenitic Model Alloys in Air With Water Vapor
,”
Oxid. Met.
,
61
(
5/6
), pp.
463
483
.
13.
Bischoff
,
J.
,
Motta
,
A.
,
Eichfeld
,
C.
,
Comstock
,
R.
,
Cao
,
G.
, and
Allen
,
T.
,
2013
, “
Corrosion of Ferritic Martensitic Steels in Steam and Supercritical Water
,”
J. Nucl. Mater.
,
441
(
1–3
), pp.
604
611
.
14.
Callister
,
W.
,
2007
,
Materials Science and Engineering an Introduction
,
Wiley Inc.
,
New York
.
15.
Fry
,
A.
,
Osgerby
,
S.
, and
Wright
,
M.
,
2002
, “
Oxidation of Alloys in Steam Environments—A Review
,” National Physical Laboratory, Teddington, UK, Report No.
MATC(A)90
.http://publications.npl.co.uk/npl_web/pdf/matc90.pdf
16.
Bsat
,
S.
, and
Huang
,
X.
,
2016
, “
Corrosion Behaviour of Alloy 800H in Low Density Superheated Steam
,”
ISIJ Int.
,
56
(
6
), pp.
1067
1075
.
17.
Kritzer
,
P.
,
2004
, “
Corrosion in High-Temperature and Supercritical Water and Aqueous Solutions: A Review
,”
J. Supercrit. Fluids
,
39
(
1–2
), pp.
1
29
.
18.
Tsai
,
W. T.
, and
Huang
,
K. E.
,
2000
, “
Microstructural Aspect and Oxidation Resistance of an Aluminide Coating on 310 Stainless Steel
,”
Thin Solid Films
,
366
(
1–2
), pp.
164
168
.
19.
Tjong
,
S. C.
,
1987
, “
Transmission Electron Microscopy Investigation of the Transient Oxides Formed on the Aluminide Coating on Inconel 625 Superalloy
,”
Surf. Coating Technol.
,
30
(
2
), pp.
207
214
.
20.
Peres
,
F. J.
, and
Castaneda
,
S.
,
2008
, “
TG-Mass Spectrometry Studies in Coating Design for Supercritical Steam Turbine
,”
Mater. Corros.
,
59
(
5
), pp.
409
413
.
21.
Das
,
D. K.
,
Singh
,
V.
, and
Joshi
,
S. V.
,
1998
, “
Evolution of Aluminide Coating Microstructure on Nickel-Base Cast Superalloy CM-247 in a Single-Step High-Activity Aluminizing Process
,”
Metall. Mater. Trans.
,
29
(
8
), pp.
2173
2188
.
22.
Shaaban
,
A.
,
Hayashi
,
S.
, and
Azumi
,
K.
,
2014
, “
Effects of Nano Metal Coatings on Growth Kinetics of α-Al2O3 Formed on Ni-50Al Alloy
,”
Oxid. Met.
,
82
(
1–2
), pp.
85
97
.
23.
Aguero
,
A.
,
Baraibar
,
I.
,
Gonzalez
,
V. M. R.
, and
Plana
,
D.
,
2016
, “
Corrosion Resistance of Novel Coatings on Ferritic Steels for Oxycombustion-Supercritical Steam Boilers: Preliminary Results
,”
Oxid. Met.
,
85
(
3–4
), pp.
263
281
.
24.
Marulanda-Arevalo
,
J.
, and
Perez-Trujillo
,
F.
,
2014
, “
Behavior of Aluminum Coating by CVD-FBR in Steam Oxidation at 700 C
,”
CT&F—Ciencia, Tecnología y Futuro
,
5
(
4
), pp.
75
84
.
25.
Sanchez
,
R.
,
Huang
,
X.
, and
Guzonas
,
D.
,
2016
, “
Effect of Water Density/Pressure on the Corrosion Behaviour of in 625 and A286
,”
AECL J. Nucl. Rev.
,
5
(
2
), pp.
333
343
.
26.
Galeriea
,
A.
,
Toscana
,
F.
,
Dupeuxa
,
M. M. J.
, and
Lucazeauc
,
G.
,
2004
, “
Stress and Adhesion of Chromia-Rich Scales on Ferritic Stainless Steels in Relation With Spallation
,”
Mater. Res.
,
7
(
1
), pp.
81
88
.
27.
Opila
,
E. J.
,
2004
, “
Volatility of Common Protective Oxides in High-Temperature Water Vapor: Current Understanding and Unanswered Questions
,”
Mater. Sci. Forum
,
765
, pp.
461
464
.
28.
Ehlers
,
J.
,
Young
,
D. E. S. E.
,
Tyagi
,
A.
,
Penkalla
,
H.
,
Singheiser
,
L.
, and
Quadakkers
,
W.
,
2006
, “
Enhanced Oxidation of the 9% Cr Steel P91 in Water Vapour Containing Environments
,”
Corros. Sci.
,
48
(
11
), pp.
3428
3454
.
29.
CN Laboratories
,
2014
, “
Evaluation of Fuel Cladding Materials for the Canadian SCWR Concept—Generation-IV Reactor Concepts
,” Canadian Nuclear Laboratories, Chalk River, ON, Canada, Internal Report No. 217-127000-ASD-001.
30.
Elbakhshwan
,
M. S.
,
Gill
,
S. K.
,
Rumaiz
,
A. K.
,
Bai
,
J.
,
Ghose
,
S.
,
Rebak
,
R. B.
, and
Ecker
,
L. E.
,
2017
, “
High-Temperature Oxidation of Advanced FeCrNi Alloy in Steam Environment
,”
Appl. Surf. Sci.
,
426
, pp.
562
571
.
31.
Bsat
,
S.
,
Xiao
,
B.
,
Huang
,
X.
, and
Pentilla
,
S.
,
2018
, “
Oxidation Behaviour of Alloys 800H, 3033 and 304 in High-Temperature Supercritical Water
,”
Oxid. Met.
,
89
(
1–2
), pp.
151
163
.
32.
Askeland
,
D. R.
, and
Wright
,
W. J.
,
2015
,
Science and Engineering of Materials
, 7th edition, Cengage Learning, Boston, MA.
33.
Lindblad
,
N. R.
,
1969
, “
A Review of the Behavior of Aluminide-Coated Superalloys
,”
Oxid. Met.
,
1
(
1
), pp.
143
170
.
34.
Young
,
D. J.
,
2008
,
High Temperature Oxidation and Corrosion of Metals
,
Elsevier
,
New York
.
35.
Khanna
,
A. S.
,
2002
,
Introduction to High Temperature Oxidation and Corrosion
,
AMS International
,
Materials Park, OH
.
36.
Stott
,
F. H.
,
Wood
,
G. C.
, and
Stringer
,
J.
,
1995
, “
The Influence of Alloying Elements on the Development and Maintenance of Protective Scales
,”
Oxid. Met.
,
44
(
1–2
), pp.
113
145
.
37.
Huang
,
X.
,
Li
,
J.
, and
Guzonas
,
D.
,
2015
, “
Characterization of FeCrAlY Alloy in Supercritical Water
,”
Corros. Eng. Sci. Technol.
,
50
(
2
), pp.
137
148
.
38.
Huang
,
X.
,
2016
, “
Developing Corrosion Prevention Coating Solution for Canadian SCWR Concept
,”
JOM
,
68
(
2
), pp.
480
488
.
39.
Aguero
,
A.
,
Muelas
,
R.
,
Gutierrez
,
M.
,
Van Vulpen
,
R.
,
Osgerby
,
S.
, and
Banks
,
J. P.
,
2007
, “
Cyclic Oxidation and Mechanical Behaviour of Slurry Aluminide Coatings for Steam Turbine Components
,”
Surf. Coating Technol.
,
201
(
14
), pp.
6253
6260
.
40.
Aguero
,
A.
,
Gonzalex
,
V.
,
Gutierrez
,
M.
, and
Muelas
,
R.
,
2013
, “
Oxidation Under Pure Steam: Cr-Based Protective Oxides and Coatings
,”
Surf. Coating Technol.
,
237
, pp.
30
38
.
41.
Qian
,
Y. F.
,
2012
, “
Corrosion Resistant Coating Materials for SCWR Application
,” Master's thesis, Carleton University, Ottawa, ON, Canada.
42.
Quadakkers
,
W. J.
,
ennis
,
P. J.
,
Zurek
,
J.
, and
Michalik
,
M.
,
2005
, “
Steam Oxidation of Ferritic Steels–Laboratory Test Kinetic Data
,”
Mater. High Temp.
,
22
(
1–2
), pp.
47
60
.
43.
Scheefer
,
M.
,
Henderson
,
M. B.
,
Aguero
,
A.
,
Allcock
,
B.
,
Norton
,
B.
,
Tsipa
,
D. N.
, and
Durham
,
R.
,
2006
, “
Development and Validation of Advanced Oxidation Protective Coatings for Super Critical Steam Power Generation Plants
,”
Conference: Materials for Advanced Power Engineering
, Liege, Belgium.https://www.researchgate.net/publication/269599069_Development_and_Validation_of_Advanced_Oxidation_Protective_Coatings_for_Super_Critical_Steam_Power_Generation_Plants
44.
Maris-Sida
,
M. C.
,
Meier
,
G. H.
, and
Pettit
,
F. S.
,
2003
, “
Some Water Vapour Effects During the Oxidation of Alloys That Are Alpha-Al2O3 Formers
,”
Metall. Mater. Trans. A
,
34
(
11
), pp.
2609
2619
.
45.
Xiang
,
Z. D.
,
Rose
,
S. R.
,
Datta
,
P. K.
, and
Scheeffer
,
M.
,
2009
, “
Steam Oxidation Resistance and Thermal Stability of Chromium Aluminide/Chromium Hybrid Coating on Alloy Steels Formed at Low Temperatures
,”
Surf. Coating Technol.
,
203
(
9
), pp.
1225
1230
.
46.
Tabikh
,
T.
,
El-Makdah
,
M.
,
Huang
,
X.
, and
Guzonas
,
D.
,
2012
, “
Corrosion Performance of Aluminized IN 625 and Hastelloy-X in Supercritical Water Condition at 500 °C
,”
Third China-Canada Joint Workshop on Supercritical Water-Cooled Reactors (CCSC-2012)
, ChongQing, China.
47.
Pint
,
B. A.
,
Zhang
,
Y.
,
Walker
,
L. R.
, and
Wright
,
I. G.
,
2007
, “
Long-Term Performance of Aluminide Coatings on Fe-Based Alloys
,”
Surf. Coat. Technol.
,
202
, pp.
637
642
.
You do not currently have access to this content.