Advanced heavy water reactor (AHWR) is a natural circulation-based, light water-cooled, heavy water-moderated pressure tube type of nuclear reactor. In AHWR, the steam separation takes place in horizontal steam drums purely based on gravity separation principle. It is a known fact that efficiency of gravity separation is affected by the carryover phenomenon, i.e., conveyance of water droplets by the steam. To minimize the carryover, it is advised to reduce the superficial velocities of phases. Lowering the flow velocities also results in to lower pressure drop, which is very much desired. However, careful attention must be given to carryover phenomenon during design. An experimental test facility known as air–water loop (AWL) simulating the scaled down steam drum of AHWR with air–water mixture has been designed and experimental work performed on carryover phenomenon is presented here. Comparison of measured entrainment fraction with existing correlations and other visual observations are described. Numerical simulations with Euler–Lagrangian method have been carried out for which droplet size distribution measured experimentally is used as an input.

References

References
1.
Sinha
,
R. K.
, and
Kakodkar
,
A.
,
2006
, “
Design and Development of the AHWR—The Indian Thorium Fuelled Innovative Nuclear Reactor
,”
Nucl. Eng. Des.
,
236
(
7–8
), pp.
683
700
.
2.
Davis
,
R. F.
,
1940
, “
The Physical Aspect of Steam Generation at High Pressures and Problem of Steam Contamination
,”
Proc. Inst. Mech. Eng.
,
144
(1), pp. 198–210.
3.
Zenz
,
F. A.
, and
Weil
,
N. A.
,
1958
, “
A Theoretical Empirical Approach to the Mechanism of Particle Entrainment From Fluidized Beds
,”
AIChE J.
,
4
(
4
), pp.
472
479
.
4.
Cheng
,
S. I.
, and
Teller
,
A. J.
,
1961
, “
Free Entrainment Behavior in Sieve Trays
,”
AIChE. J.
,
7
(
2
), p.
283
.
5.
Newitt
,
D. M.
,
Dombrowski
,
N.
, and
Knelman
,
F. H.
,
1954
, “
Liquid Entrainment—1. The Mechanism of Drop Formation From Gas or Vapour Bubbles
,”
Trans. Instn. Chem. Engrs.
,
32
, pp. 244–261.
6.
Garner
,
F. H.
,
Ellis
,
S. R. M.
, and
Lacey
,
J. A.
,
1954
, “
The Size Distribution and Entrainment of Droplets, Trans
,”
Inst. Chem. Eng.
,
32
, pp. 222–235.
7.
Spiel
,
D. E.
,
1994
, “
The Sizes of the Jet Drops Produced by Air Bubbles Bursting on Sea and Fresh Water Surfaces
,”
Tellus
,
46B
(
4
), p.
325
.
8.
Aiba
,
S.
, and
Yamada
,
T.
,
1959
, “
Studies on Entrainment
,”
AIChE J.
,
5
(
4
), p.
506
.
9.
Rozen
,
A. M.
,
Golub
,
S. I.
, and
Davydov
,
I. F.
,
1970
, “
Some Laws Governing Drop Carryover
,”
Sovt. Phys. Doklady
,
14
(
7
), p.
648
.
10.
Sterman
,
L. S.
,
1958
, “
On the Theory of Steam Separation
,”
Sovt. Phys.—Tech. Phys.
,
28
(
7
), p.
1562
.
11.
Kolkolostov
,
V. A.
,
1952
, “
Investigation of the Operation of the Steam Space of the ISV Evaporator
,” Trudy, MEI.
12.
Afeti
,
G. M.
, and
Resch
,
F. J.
,
1990
, “
Distribution of the Liquid Aerosol Produced From Bursting Bubbles in Sea and Distilled Water
,”
Tellus B: Chem. Phys. Meteorol.
,
42
(
4
), pp.
378
384
.
13.
Wu
,
J.
,
2001
, “
Production Functions of Film Drops by Bursting Bubbles
,”
J. Phys. Oceanogr.
,
31
(
11
), pp.
3249
3257
.
14.
Gunther
,
A.
,
Walchli
,
S.
, and
Rohr
,
P. R. V.
,
2003
, “
Droplet Production From Disintegrating Bubbles at Water Surfaces. Single vs. multiple Bubbles
,”
Int. J. Multiphase Flow
,
29
, p.
795
.
15.
Kientzler
,
C. F.
,
Arons
,
A. B.
,
Blanchard
,
D. C.
, and
Woodcock
,
A. H.
,
1954
, “
Photographic Investigation of the Projection of Droplets by Bubbles Bursting at a Water Surface
,”
Tellus
,
6
(
1
), pp.
1
7
.
16.
Blanchard
,
D. C.
, and
Syzdek
,
L. D.
,
1988
, “
Film Drop Production as a Function of Bubble Size
,”
J. Geophys. Res.
,
94
(
C4
), pp.
10999
11002
.
17.
Mochizuki
,
H.
, and
Hirao
,
Y.
,
1993
, “
Development of Steam Separator Performance Analysis Code and Its Validation-Carryover Experiments
,”
J. Nucl. Sci. Technol.
,
30
(
10
), pp.
1059
1070
.
18.
Cosandy
,
J. O.
,
Gunther
,
A.
, and
Rohr
,
P. R. V.
,
2001
, “
Entrainment of Soluble and Non Soluble Tracers From a Boiling Water Surface
,”
Nucl. Eng. Des.
,
208
, p.
87
.
19.
Cosandy
,
J. O.
,
Gunther
,
A.
, and
Rohr P. R
,
V.
,
2003
, “
Transport of Salts and Micron-Sized Particles Entrained From a Boiling Water Pool
,”
Exp. Therm. Fluid Sci.
,
27
, p.
877
.
20.
Sun
,
D. C.
,
Xiang
,
Y.
,
Tian
,
W. X.
,
Liu
,
L. C.
,
Zhang
,
P.
,
Qiu
,
S. Z.
, and
Su
,
G. H.
,
2015
, “
Experimental Investigation of Upper Plenum Entrainment in AP1000
,”
Prog. Nucl. Energy
,
80
, pp.
80
85
.
21.
Sun
,
D. C.
,
Tian
,
W. X.
,
Qui
,
S. Z.
,
Su
,
G. H.
,
Zhang
,
P.
,
Liu
,
J. C.
, and
Ma
,
Y. Y.
,
2014
, “
Scaling Analysis of AP1000 ADS-4 Entrainment and Depressurization
,”
Prog. Nucl. Energy
,
74
, pp.
71
78
.
22.
Zhang
,
P.
,
Li
,
W.
,
Di
,
Z.
,
Xiao
,
H.
,
Chen
,
L.
,
Chang
,
H.
, and
Chen
,
P.
,
2017
, “
An Experimental Study of Pool Entrainment With Side Exit
,”
Ann. Nucl. Energy
,
110
, pp.
406
411
.
23.
Kruzhilin
,
G. N.
,
1951
, “
The Dependence of the Permissible Vapor Load Upon the Pressure
,”
Izv.Akad. Nauk.Otd.Tekh.Nauk.
,
7
, p.
1106
.
24.
Kataoka
,
I.
, and
Ishii
,
M.
,
1984
, “
Mechanistic Modeling of Pool Entrainment Phenomenon
,”
Int. J. Heat Mass Transfer
,
27
(
11
), p.
1999
.
25.
Iyer
,
K.
,
Prabhudharwadkar
,
M.
, and
More
,
R. Z.
,
2010
, “
Experimental Study of Liquid Carryover in a Separator Drum
,”
Nucl. Eng. Des.
,
240
(
1
), p.
76
.
26.
Basu
,
D. N.
,
Patil
,
N. D.
,
Bhattacharyya
,
S.
, and
Das
,
P. K.
,
2012
, “
Experimental Investigations of Droplet Carryover From the Separator Drum of an Air-Lift Loop Simulating a Scaled-down AHWR
,”
Exp. Therm. Fluid Sci.
,
42
, pp.
163
173
.
27.
Bagul
,
R. K.
,
Pilkhwal
,
D. S.
,
Limaye
,
S. P.
,
Vijayan
,
P. K.
, and
Joshi
,
J. B.
,
2018
, “
Air Water Loop for Investigation of Flow Dynamics in a Steam Drum: Steady State Two-Phase Natural Circulation Experiments and Validation
,”
Nucl. Eng. Des.
,
318
, pp.
266
282
.
28.
Bagul
,
R. K.
,
Pilkhwal
,
D. S.
,
Vijayan
,
P. K.
, and
Joshi
,
J. B.
,
2018
, “
Air Water Loop for Investigation of Flow Dynamics in a Steam Drum: Carryover Experiments and CFD Simulation
,”
Nucl. Eng. Des.
,
328
, pp.
266
282
.
29.
The International Association for the Properties of Water and Steam,
2013
, “Technical Guidance Document: Steam Purity for Turbine Operation,” IAPWS, Report No. TSD5-13.
You do not currently have access to this content.