Local subassembly faults (LFs) have been considered to be of greater importance in safety evaluation in sodium-cooled fast reactors (SFRs) because fuel elements were generally densely arranged in the subassemblies (SAs) in this type of reactors, and because power densities were higher compared with those in light water reactors. A hypothetical total instantaneous flow blockage (HTIB) at the coolant inlet of an SA gives most severe consequences among a variety of LFs. Although an evaluation on the consequences of HTIB using SAS4A code was performed in the past study, SAS4A code was further developed by implementing analytical model of power control system in this study. An evaluation on the consequences of HTIB in an SFR by this developed SAS4A code was also performed in this study. It was clarified by the analyses considering power control system that the reactor would be safely shut down by the reactor protection system triggered by either of 116% over power or delayed neutron detector (DND) trip signals. Therefore, the conclusion in the past study that the consequences of HTIB would be much less severe than that of unprotected-loss-of-flow (ULOF) was strongly supported by this study. Furthermore, SAS4A code was newly validated using four in-pile experiments which simulated HTIB events. The validity of SAS4A application to safety evaluation on the consequence of HTIB was further enhanced in this study. Thus, the methodology of HTIB evaluation was established in this study together with the past study and is applicable to HTIB evaluations in other SFRs.

References

References
1.
Fukano
,
Y.
,
2015
, “
Development of Safety Assessment Methodology on Fuel Element Failure Propagation in SFR and Its Application to Monju
,”
J. Nucl. Sci. Technol
,
52
(
2
), pp.
178
192
.
2.
Vaughan
,
G. J.
,
1985
, “
Event Tree Analysis of the Subassembly Accident
,”
International Topical Meeting on Fast Reactor Safety
,
Guernsey, UK
,
May 12–16
, pp.
457
463
.
3.
Schleisiek
,
K.
,
1985
, “
Risk Oriented Analysis of Subassembly Accidents
,”
International Topical Meeting on Fast Reactor Safety
,
Guernsey, UK
, pp.
141
149
.
4.
Fukano
,
Y.
,
Naruto
,
K.
,
Kurisaka
,
K.
, and
Nishimura
,
M.
,
2015
, “
Updating of Adventitious Fuel Pin Failure Frequency in Sodium-Cooled Fast Reactors and Probabilistic Risk Assessment on Consequent Severe Accident in Monju
,”
J. Nucl. Sci. Technol
,
52
(
9
), pp.
1122
1132
.
5.
Nishimura
,
M.
,
Fukano
,
Y.
,
Kurisaka
,
K.
, and
Naruto
,
K.
,
2017
, “
Updating of Local Blockage Frequency in the Reactor Core of SFR and PRA on Consequent Severe Accident in Monju
,”
J. Nucl. Sci. Technol.
,
54
(
11
), pp.
1178
1189
.
6.
ERP
,
J. B.
,
Chawla
,
T. C.
, and
Fauske
,
H. K.
,
1974
, “
An Evaluation of Pin-to-Pin Failure Propagation Due to Fission Gas Release in Fuel Subassemblies of Liquid-Metal-Cooled Fast Breeder Reactors
,”
Nucl. Eng. Des.
,
31
(
1
), pp.
128
150
.
7.
Schleisiek
,
K.
,
Aberle
,
J.
,
Homann
,
C.
,
Schmuck
,
I.
,
Maschek
,
W.
,
Rahn
,
A.
,
Romer
,
O.
,
Schmidt
,
L.
,
Borms
,
L.
, and
Verwimp
,
A.
,
1998
, “
The Mol-7C in-Pile Local Blockage Experiments: Main Results, Conclusions, and Extrapolation to Reactor Conditions
,”
Nucl. Sci. Eng.
,
128
(
2
), pp.
93
143
.
8.
Kayser
,
G.
,
Charpenel
,
J.
, and
Jamond
,
C.
,
1998
, “
Summary of the SCARABEE-N Subassembly Melting and Propagation Test With an Application to a Hypothetical Total Instantaneous Blockage in a Reactor
,”
Nucl. Sci. Eng.
,
128
(
2
), pp.
144
185
.
9.
Weimar
,
P.
, and
Ernst
,
W.
, “
Mol-7B—An 18-Pin Bundle Operating 200 Days Beyond Breach
,”
Nucl. Technol.
,
57
(
1
), pp.
81
89
.
10.
Schleisiek
,
K.
,
Aberle
,
J.
,
Jacobi
,
S.
,
Karsten
,
G.
,
Rahn
,
A.
, and
Schmidt
,
L.
,
1987
, “
Mol 7C Experiments on Local Fault Propagation in Irradiated LMFBR Fuel Subassemblies
,”
Nucl. Eng. Des.
,
100
(
3
), pp.
435
445
.
11.
Weimar
,
P.
, and
Schleisiek
,
K.
,
1991
, “
Results of Postirradiation Examination of the in-Pile Blockage Experiments Mol-7C/4 and Mol-7C/5
,”
Nucl. Technol.
,
96
(
1
), pp.
29
36
.
12.
Strain
,
R. V.
,
Gross
,
K. C.
,
Lambert
,
J. D. B.
,
Colburn
,
R. P.
, and
Odo
,
T.
,
1992
, “
Behavior of Breached Mixed-Oxide Fuel Pins During Off-Normal High-Temperature Irradiation
,”
Nucl. Technol.
,
97
(
2
), pp.
227
240
.
13.
Schleisiek
,
K.
,
Aberle
,
J.
,
Jacobi
,
S.
,
Rahn
,
A.
, and
Schmidt
,
L.
,
1992
, “
The In-Pile Local Blockage Experiments Mol-7C/6 and 7—Results and Preliminary Interpretation
,”
Nucl. Technol.
,
99
(
3
), pp.
289
300
.
14.
Schleisiek
,
K.
,
Aberle
,
J.
,
Schmuck
,
I.
,
Schmidt
,
L.
,
Weimer
,
P.
, and
Verwimp
,
A.
,
1994
, “
Experimental Investigation of Role of Burn-Up for Local Fault Propagation in LMR Fuel Assemblies
,”
J. Nucl. Sci. Technol.
,
31
(
10
), pp.
1011
1022
.
15.
Fukano
,
Y.
, and
Charpenel
,
J.
,
2004
, “
The Adventitious-Pin-Failure Study Under a Slow Power Ramp
,”
ASME
Paper No. ICONE12-49048.
16.
Fukano
,
Y.
,
2013
, “
Comprehensive and Consistent Interpretation of Local Fault Experiments and Application to Hypothetical Local Over-Power Accident in Monju
,”
J. Nucl. Sci. Technol.
,
50
(
9
), pp.
950
965
.
17.
Nishimura
,
M.
, and
Fukano
,
Y.
,
2014
, “
Local Flow Blockage Analysis With Checkerboard Configuration in a Wire Wrapped Fuel Subassembly Using the ASFRE Code
,”
Tenth International Topical Meeting on Nuclear Thermal-Hydraulics, Operation and Safety (NUTHOS10)
,
Okinawa, Japan
,
Dec. 14–18
, p.
11
.
18.
Fukano
,
Y.
,
2015
, “
SAS4A Analysis on Hypothetical Total Instantaneous Flow Blockage in SFRs Based on in-Pile Experiments
,”
Ann. Nucl. Energy
,
77
, pp.
376
392
.
19.
Tentner
,
A. M.
,
Weber
,
D. P.
,
Birgersson
,
G.
,
Bordner
,
G. L.
,
Briggs
,
L. L.
,
Cahalan
,
J. E.
,
Dunn
,
F. E.
,
Kalimullah
,
Miles
,
K. J.
, and
Prohammer
,
F. G.
,
1984
, “
The SAS4A LMFBR Whole Core Accident Analysis Code
,”
International Meeting on Fast Reactor Safety
,
Knoxville, TN
,
Apr. 21–24
, pp.
989
997
.
20.
Miles
,
K. J.
, and
Hill
,
D. J.
,
1985
, “
DEFORM-4: Fuel Pin Characterization and Transient Response in the SAS4A Accident Analysis Code System
,”
International Topical Meeting on Fast Reactor Safety
,
Guernsey, UK
,
May 12–16
, pp.
51
58
.
21.
Tentner
,
A. M.
,
Miles
,
K. J.
,
Kalimullah
., and
Hill
,
D. J.
,
1985
, “
Fuel Relocation Modeling in the SAS4A Accident Analysis Code System
,”
International Topical Meeting on Fast Reactor Safety
,
Guernsey, UK
,
Apr. 21–24
, pp.
85
90
.
22.
Nonaka
,
N.
,
Kasahara
,
F.
,
Niwa
,
H.
, and
Sato
,
I.
,
1985
, “
In-Pile Experiment Analyses Relevant to Initiating-Phase Energetics
,”
International Topical Meeting on Fast Reactor Safety
,
Guernsey, UK
,
Apr. 21–24
, pp.
413
418
.
23.
Cahalan
,
J. E.
, and
Wei
,
T. Y. C.
,
1990
, “
Modeling Developments for the SAS4A and SASSYS Computer Codes
,”
International Fast Reactor Safety Meeting
,
Snowbird, UT
,
Aug. 12–16
, pp.
123
132
.
24.
Nonaka
,
N.
, and
Sato
,
I.
,
1992
, “
Improvement of Evaluation Method for Initiating-Phase Energetics Based on CABRI-1 In-Pile Experiments
,”
Nucl. Technol.
,
98
(
1
), pp.
54
69
.
25.
Imaizumi
,
Y.
, and
Fukano
,
Y.
,
2016
, “
SAS4A Analyses of CABRI In-Pile Experiments Simulating Unprotected-Loss-of-Flow Accidents in SFRs
,”
International Congress on Advances in Nuclear Power Plants (ICAPP2016)
,
San Francisco, CA
,
Apr. 17–20
, pp.
357
363
.
26.
Fanning
,
T. H.
,
Brunett
,
A. J.
, and
Sumner
,
T.
,
2017
, “
Code Manual
,” Argonne National Laboratory, Argonne National Laboratory, Argonne, IL, accessed June 15, 2018, https://wiki.anl.gov/sas/Code_Manual
27.
Yamada
,
F.
,
Fukano
,
Y.
,
Nishi
,
H.
, and
Konomura
,
M.
,
2014
, “
Development of Natural Circulation Analytical Model in Super-COPD Code and Evaluation of Core Cooling Capability in Monju During a Station Blackout
,”
Nucl. Technol.
,
188
(
3
), pp.
292
321
.
28.
Fukano
,
Y.
,
Onoda
,
Y.
,
Sato
,
I.
, and
Charpenel
,
J.
,
2009
, “
Fuel Pin Behavior Under Slow Ramp-Type Transient-Overpower Conditions in the CABRI-FAST Experiments
,”
J. Nucl. Sci. Technol.
,
46
(
11
), pp.
1049
1058
.
29.
Fukano
,
Y.
,
Onoda
,
Y.
, and
Sato
,
I.
,
2010
, “
Fuel Pin Behavior Up to Cladding Failure Under Pulse-Type Transient-Overpower in the CABRI-FAST and –RAFT Experiments
,”
J. Nucl. Sci. Technol.
,
47
(
4
), pp.
396
410
.
30.
Suzuki
,
T.
,
Yoshiharu
,
T.
,
Kawada
,
K.
,
Tagami
,
H.
, and
Sogabe
,
J.
,
2014
, “
Safety Evaluation of Prototype Fast-Breeder Reactor—Analysis of ULOF Accident to Demonstrate In-Vessel Retention
,”
ASME
Paper No. ICONE22-30604.
31.
Sato
,
I.
,
Tobita
,
Y.
,
Suzuki
,
T.
,
Kawada
,
K.
,
Fukano
,
Y.
,
Fujita
,
S.
,
Kamiyama
,
K.
,
Nonaka
,
N.
,
Ishikawa
,
M.
, and
Usami
,
S.
,
2017
, “
Analysis of ULOF Accident in Monju Reflecting the Knowledge From CABRI In-Pile Experiments and Others
,” Japan Atomic Energy Agency, Ibaraki, Japan, Technical Report No.
JAEA-Research 2007-055
.https://inis.iaea.org/search/search.aspx?orig_q=RN:39021856
You do not currently have access to this content.