The sputtering of graphite due to the bombardment of hydrogen isotopes is crucial to successfully using graphite in the fusion environment. In this work, we use molecular dynamics to simulate the sputtering using the large-scale atomic/molecular massively parallel simulator (lammps). The calculation results show that the peak values of the sputtering yield are between 25 eV and 50 eV. When the incident energy is greater than the energy corresponding to the peak value, a lower carbon sputtering yield is obtained. The temperature that is most likely to sputter is approximately 800 K for hydrogen, deuterium, and tritium. Below the 800 K, the sputtering yields increase with temperature. By contrast, above the 800 K, the yields decrease with increasing temperature. Under the same temperature and incident energy, the sputtering rate of tritium is greater than that of deuterium, which in turn is greater than that of hydrogen. When the incident energy is 25 eV, the sputtering yield at 300 K increases below an incident angle at 30 deg and remains steady after that.

References

References
1.
Miyahara
,
A.
, and
Tanabe
,
T.
,
1988
, “
Graphite as Plasma Facing Material
,”
J. Nucl. Mater.
,
155
, pp.
49
57
.
2.
Pimenta
,
M.
,
Dresselhaus
,
G.
,
Dresselhaus
,
M. S.
,
Cancado
,
L.
,
Jorio
,
A.
, and
Saito
,
R.
,
2007
, “
Studying Disorder in Graphite-Based Systems by Raman Spectroscopy
,”
Phys. Chem. Chem. Phys.
,
9
(
11
), pp.
1276
1290
.
3.
Linke
,
J.
,
Escourbiac
,
F.
,
Mazul
,
I.
,
Nygren
,
R.
,
Rödig
,
M.
,
Schlosser
,
J.
, and
Suzuki
,
S.
,
2007
, “
High Heat Flux Testing of Plasma Facing Materials and Components–Status and Perspectives for ITER Related Activities
,”
J. Nucl. Mater.
,
367
, pp.
1422
1431
.
4.
Küppers
,
J.
,
1995
, “
The Hydrogen Surface Chemistry of Carbon as a Plasma Facing Material
,”
Surf. Sci. Rep.
,
22
(
7–8
), pp.
249
321
.
5.
Kim
,
H.
,
Noh
,
S.
,
Kweon
,
J.
, and
Lee
,
C. E.
,
2013
, “
Influence of Irradiation With Low-Energy Helium Ions on Graphite and Tungsten for Fusion Applications
,”
J. Korean Phys. Soc.
,
63
(
7
), pp.
1422
1426
.
6.
Ferro
,
Y.
,
Jelea
,
A.
,
Marinelli
,
F.
,
Brosset
,
C.
, and
Allouche
,
A.
,
2005
, “
Density Functional Theory and Molecular Dynamic Studies of Hydrogen Interaction With Plasma-Facing Graphite Surfaces and the Impact of Boron Doping
,”
J. Nucl. Mater.
,
337
, pp.
897
901
.
7.
Kim
,
H.
,
Lee
,
S.
,
Ohn
,
Y.
,
Noh
,
S.
,
Kweon
,
J.
,
Park
,
J.
,
Lee
,
C. E.
,
Woo
,
H.-J.
,
Park
,
S.-J.
, and
Chung
,
K.-S.
,
2012
, “
Damage in Graphite Tiles Irradiated With Helium Plasmas
,”
J. Korean Phys. Soc.
,
61
(
5
), pp.
832
834
.
8.
Wright
,
P.
,
Davis
,
J.
,
Macaulay-Newcombe
,
R.
,
Hamilton
,
C.
, and
Haasz
,
A.
,
2003
, “
Chemical Erosion of DIII-D Divertor Tile Specimens
,”
J. Nucl. Mater.
,
313
, pp.
158
162
.
9.
Yang
,
S. J.
,
Choe
,
J.-M.
,
Jin
,
Y.-G.
,
Lim
,
S.-T.
,
Lee
,
K.
,
Kim
,
Y. S.
,
Choi
,
S.
,
Park
,
S.-J.
,
Hwang
,
Y.
,
Kim
,
G.-H.
, and
Park, C. R.
,
2012
, “
Influence of H+ Ion Irradiation on the Surface and Microstructural Changes of a Nuclear Graphite
,”
Fusion Eng. Des.
,
87
(
4
), pp.
344
351
.
10.
Shimada
,
M.
,
Costley
,
A.
,
Federici
,
G.
,
Ioki
,
K.
,
Kukushkin
,
A.
,
Mukhovatov
,
V.
,
Polevoi
,
A.
, and
Sugihara
,
M.
,
2005
, “
Overview of Goals and Performance of ITER and Strategy for Plasma-Wall Interaction Investigation
,”
J. Nucl. Mater.
,
337
, pp.
808
815
.
11.
Yoshida
,
M.
,
Tanabe
,
T.
,
Ohno
,
N.
,
Yoshimi
,
M.
, and
Takamura
,
S.
,
2009
, “
High Temperature Irradiation Damage of Carbon Materials Studies by Laser Raman Spectroscopy
,”
J. Nucl. Mater.
,
386
, pp.
841
843
.
12.
Hino
,
T.
, and
Yamashina
,
T.
,
1993
, “
Review on Plasma Facing Materials and Suitable Divertor Configuration of a Fusion Experimental Reactor
,”
Mater. Trans., JIM
,
34
(
11
), pp.
1106
1110
.
13.
Patil
,
Y.
,
Khirwadkar
,
S.
,
Belsare
,
S.
,
Swamy
,
R.
,
Khan
,
M.
,
Tripathi
,
S.
, and
Bhope
,
K.
,
2015
, “
R&D on Divertor Plasma Facing Components at the Institute for Plasma Research
,”
Nukleonika
,
60
(
2
), pp.
285
288
.
14.
Vietzke
,
E.
,
Wada
,
M.
, and
Hennes
,
M.
,
1999
, “
Reflection and Adsorption of Deuterium Atoms and Molecules on Graphite
,”
J. Nucl. Mater.
,
266
, pp.
324
329
.
15.
Atsumi
,
H.
,
2002
, “
Hydrogen Bulk Retention in Graphite and Kinetics of Diffusion
,”
J. Nucl. Mater.
,
307
, pp.
1466
1470
.
16.
Ito
,
A.
, and
Nakamura
,
H.
,
2007
, 2008, “
Hydrogen Isotope Sputtering of Graphite by Molecular Dynamics Simulation
,”
Thin Solid Films
,
516
(19), pp. 6553–6559.
17.
Andersen
,
H. H.
, and
Bay
,
H. L.
,
1981
, “
Sputtering Yield Measurements
,”
Sputtering by Particle Bombardment I
,
Springer
, Berlin, pp.
145
218
.
18.
Roth
,
J.
,
Vietzke
,
E.
, and
Haasz
,
A.
,
1991
, “
Erosion of Graphite Due to Particle Impact
,” Atomic and Plasma-Material Interaction Data for Fusion, Vol.
1
, International Atomic Energy Agency, Vienna, Austria, p.
63
.
19.
Goebel
,
D.
,
Bohdansky
,
J.
,
Conn
,
R.
,
Hirooka
,
Y.
,
LaBombard
,
B.
,
Leung
,
W.
,
Nygren
,
R.
,
Roth
,
J.
, and
Tynan
,
G.
,
1988
, “
Erosion of Graphite by High Flux Hydrogen Plasma Bombardment
,”
Nucl. Fusion
,
28
(
6
), p.
1041
.
20.
Baskes
,
M.
,
Brice
,
D.
,
Heifetz
,
D.
,
Dylla
,
H.
,
Wilson
,
K.
,
Doyle
,
B.
,
Wampler
,
W.
, and
Cecchi
,
J.
,
1984
, “
Tritium Inventory and Permeation in TFTR
,”
J. Nucl. Mater.
,
128
, pp.
629
635
.
21.
Takeguchi
,
Y.
,
Kyo
,
M.
,
Uesugi
,
Y.
,
Tanaka
,
Y.
, and
Masuzaki
,
S.
,
2009
, “
Erosion and Dust Formation of Graphite Materials Under Low-Energy and High-Flux Atomic Hydrogen Irradiation
,”
Phys. Scr.
,
2009
(
T138
), p.
014056
.
22.
Liang
,
J.
,
Mayer
,
M.
,
Roth
,
J.
,
Balden
,
M.
, and
Eckstein
,
W.
,
2007
, “
Hydrogen Isotopic Effects on the Chemical Erosion of Graphite Induced by Ion Irradiation
,”
J. Nucl. Mater.
,
363
, pp.
184
189
.
23.
Hopf
,
C.
, and
Jacob
,
W.
,
2005
, “
Bombardment of Graphite With Hydrogen Isotopes: A Model for the Energy Dependence of the Chemical Sputtering Yield
,”
J. Nucl. Mater.
,
342
(
1–3
), pp.
141
147
.
24.
Brenner
,
D. W.
,
Shenderova
,
O. A.
,
Harrison
,
J. A.
,
Stuart
,
S. J.
,
Ni
,
B.
, and
Sinnott
,
S. B.
,
2002
, “
A Second-Generation Reactive Empirical Bond Order (REBO) Potential Energy Expression for Hydrocarbons
,”
J. Phys.: Condens. Matter
,
14
(
4
), p.
783
.
25.
Ito
,
A.
,
Wang
,
Y.
,
Irle
,
S.
,
Morokuma
,
K.
, and
Nakamura
,
H.
,
2009
, “
Molecular Dynamics Simulation of Hydrogen Atom Sputtering on the Surface of Graphite With Defect and Edge
,”
J. Nucl. Mater.
,
390
, pp.
183
187
.
26.
Petucci
,
J.
,
LeBlond
,
C.
,
Karimi
,
M.
, and
Vidali
,
G.
,
2013
, “
Diffusion, Adsorption, and Desorption of Molecular Hydrogen on Graphene and in Graphite
,”
J. Chem. Phys.
,
139
(
4
), p.
044706
.
27.
Marian
,
J.
,
Zepeda-Ruiz
,
L.
,
Gilmer
,
G. H.
,
Bringa
,
E. M.
, and
Rognlien
,
T.
,
2006
, “
Simulations of Carbon Sputtering in Amorphous Hydrogenated Samples
,”
Phys. Scr.
,
2006
(
T124
), p.
65
.
28.
Stuart
,
S. J.
,
Tutein
,
A. B.
, and
Harrison
,
J. A.
,
2000
, “
A Reactive Potential for Hydrocarbons With Intermolecular Interactions
,”
J. Chem. Phys.
,
112
(
14
), pp.
6472
6486
.
29.
Crowell
,
A.
,
1954
, “
Approximate Method of Evaluating Lattice Sums of r−n for Graphite
,”
J. Chem. Phys.
,
22
(
8
), pp.
1397
1399
.
30.
Balden
,
M.
, and
Roth
,
J.
,
2000
, “
New Weight-Loss Measurements of the Chemical Erosion Yields of Carbon Materials Under Hydrogen Ion Bombardment
,”
J. Nucl. Mater.
,
280
(
1
), pp.
39
44
.
31.
Ziegler
,
J. F.
,
2004
, “
SRIM-2003
,”
Nucl. Instrum. Methods Phys. Res. Sect. B
,
219
, pp.
1027
1036
.
32.
Liu
,
J.
,
Wang
,
C.
,
Liang
,
T.
, and
Lai
,
W.
,
2016
, “
Interaction of Boron With Graphite: A van der Waals Density Functional Study
,”
Appl. Surf. Sci.
,
379
, pp.
402
410
.
33.
Yamashiro
,
M.
, and
Hamaguchi
,
S.
,
2010
, “
Molecular Dynamics Simulation Study on Sputtering of Graphite or Amorphous Carbon by Low-Energy Hydrogen or Its Isotope Ion Beams
,”
IEEE
International Conference on Plasma Science
, Norfolk, VA, June 20–24, p.
1
.
You do not currently have access to this content.