In order to study the contribution of manganese (Mn) atoms in copper (Cu) precipitates to hardening in body centered cubic (BCC) structure iron (Fe) matrix, the interactions of a 1/2 〈111〉 {110} edge dislocations with nanosized Cu and Cu–Mn precipitates in BCC Fe have been investigated by using molecular dynamics method (MD). The results indicate that the critical resolved shear stresses (τc) of the Cu–Mn precipitates are larger than that of Cu precipitates. Meanwhile, τc of the Cu–Mn precipitates show a much more significant dependence on temperature and size compared to Cu precipitates. Mn atoms exhibit strong attraction to dislocation segment in Cu precipitate and improve the fraction of transformed atoms from BCC phase to nine rhombohedron (R) phase for big size precipitates. Those all lead to the higher resistance to the dislocation glide. Eventually, these features confirmed that the appearance of Mn atoms in Cu precipitates greatly facilitates the hardening in BCC Fe matrix.

References

1.
Lambrecht
,
M.
,
Malerba
,
L.
, and
Almazouzi
,
A.
,
2008
, “
Influence of Different Chemical Elements on Irradiation-Induced Hardening Embrittlement of RPV Steels
,”
J. Nucl. Mater.
,
378
(
3
), pp.
282
290
.
2.
Debarberis
,
L.
,
Sevini
,
F.
,
Acosta
,
B.
,
Kryukov
,
A.
,
Nikolaev
,
Y.
,
Amaev
,
A. D.
, and
Valo
,
M.
,
2002
, “
Irradiation Embrittlement of Model Alloys and Commercial Steels: Analysis of Similitude Behaviors
,”
Int. J. Pressure Vessels Piping
,
79
(
8
), pp.
637
642
.
3.
Kryukov
,
A.
,
Debarberis
,
L.
,
Von Estorff
,
U.
,
Gillemot
,
F.
, and
Oszvald
,
F.
,
2012
, “
Irradiation Embrittlement of Reactor Pressure Vessel Steel at Very High Neutron Fluence
,”
J. Nucl. Mater.
,
422
(
1–3
), pp.
173
177
.
4.
Ahlstrand
,
R.
,
Bièth
,
M.
, and
Rieg
,
C.
,
2004
, “
Neutron Embrittlement of VVER Reactor Pressure Vessels-Recent Results, Open Issues and New Developments
,”
Nucl. Eng. Des.
,
230
(
1–3
), pp.
267
275
.
5.
Gurovich
,
B.
,
Kuleshova
,
E.
,
Zabusov
,
O.
,
Fedotova
,
S.
,
Frolov
,
A.
,
Saltykov
,
M.
, and
Maltsev
,
D.
,
2013
, “
Influence of Structural Parameters on the Tendency of VVER-1000 Reactor Pressure Vessel Steel to Temper Embrittlement
,”
J. Nucl. Mater.
,
435
(
1–3
), pp.
25
31
.
6.
Harry
,
T.
, and
Bacon
,
D. J.
,
2002
, “
Computer Simulation of the Core Structure of the< 111> Screw Dislocation in α-Iron Containing Copper Precipitates—II: Dislocation–Precipitate Interaction and the Strengthening Effect
,”
Acta Mater.
,
50
(
1
), pp.
209
222
.
7.
Meslin
,
E.
,
Radiguet
,
B.
,
Pareige
,
P.
, and
Barbu
,
A.
,
2010
, “
Kinetic of Solute Clustering in Neutron Irradiated Ferritic Model Alloys and a French Pressure Vessel Steel Investigated by Atom Probe Tomography
,”
J. Nucl. Mater.
,
399
(
2–3
), pp.
137
145
.
8.
Miller
,
M. K.
,
Sokolov
,
M. A.
,
Nanstad
,
R. K.
, and
Russell
,
K. F.
,
2006
, “
APT Characterization of High Nickel RPV Steels
,”
J. Nucl. Mater.
,
351
(
1–3
), pp.
187
196
.
9.
Kotrechko
,
S.
,
Dubinko
,
V.
,
Stetsenko
,
N.
,
Terentyev
,
D.
,
He
,
X.
, and
Sorokin
,
M.
,
2015
, “
Temperature Dependence of Irradiation Hardening Due to Dislocation Loops and Precipitates in RPV Steels and Model Alloys
,”
J. Nucl. Mater.
,
464
, pp.
6
15
.
10.
Chaouadi
,
R.
, and
Gérard
,
R.
,
2005
, “
Copper Precipitate Hardening of Irradiated RPV Materials and Implications on the Superposition Law and Re-Irradiation Kinetics
,”
J. Nucl. Mater.
,
345
(
1
), pp.
65
74
.
11.
Isheim
,
D.
,
Gagliano
,
M. S.
,
Fine
,
M. E.
, and
Seidman
,
D. N.
,
2006
, “
Interfacial Segregation at Cu-Rich Precipitates in a High-Strength Low-Carbon Steel Studied on a Sub-Nanometer Scale
,”
Acta Mater.
,
54
(
3
), pp.
841
849
.
12.
Jiao
,
Z. B.
,
Luan
,
J. H.
,
Zhang
,
Z. W.
,
Miller
,
M. K.
,
Ma
,
W. B.
, and
Liu
,
C. T.
,
2013
, “
Synergistic Effects of Cu and Ni on Nanoscale Precipitation and Mechanical Properties of High-Strength Steels
,”
Acta Mater.
,
61
(
16
), pp.
5996
6005
.
13.
Zhang
,
C.
, and
Enomoto
,
M.
,
2006
, “
Study of the Influence of Alloying Elements on Cu Precipitation in Steel by Non-Classical Nucleation Theory
,”
Acta Mater.
,
54
(
16
), pp.
4183
4191
.
14.
Xie
,
Y. P.
, and
Zhao
,
S. J.
,
2014
, “
The Segregation Behavior of Manganese and Silicon at the Coherent Interfaces of Copper Precipitates in Ferritic Steels
,”
J. Nucl. Mater.
,
445
(
1–3
), pp.
43
49
.
15.
Osetsky
,
Y. N.
, and
Bacon
,
D. J.
,
2003
, “
An Atomic-Level Model for Studying the Dynamics of Edge Dislocations in Metals
,”
Modell. Simul. Mater. Sci. Eng.
,
11
(
4
), pp.
427
446
.
16.
Othen
,
P. J.
,
Jenkins
,
M. L.
, and
Smith
,
G. D. W.
,
1994
, “
High-Resolution Electron Microscopy Studies of the Structure of Cu Precipitates in α-Fe
,”
Philos. Mag. A
,
70
(
1
), pp.
1
24
.
17.
Lv
,
G.
,
Zhang
,
H.
,
He
,
X.
,
Yang
,
W.
, and
Su
,
Y.
,
2015
, “
Atomistic Simulation of Cu–Ni Precipitates Hardening in α-Iron
,”
J. Phys. D: Appl. Phys.
,
48
(
11
), p.
115302
.
18.
Terentyev
,
D.
,
Malerba
,
L.
,
Bonny
,
G.
,
Al-Motasem
,
A. T.
, and
Posselt
,
M.
,
2011
, “
Interaction of an Edge Dislocation With Cu–Ni-Vacancy Clusters in BCC Iron
,”
J. Nucl. Mater.
,
419
(
1–3
), pp.
134
139
.
19.
Gorbatov
,
O. I.
,
Gornostyrev
,
Y. N.
,
Korzhavyi
,
P. A.
, and
Ruban
,
A. V.
,
2015
, “
Effect of Ni and Mn on the Formation of Cu Precipitates in α-Fe
,”
Scr. Mater.
,
102
, pp.
11
14
.
20.
Maury
,
F.
,
Lorenzelli
,
N.
, and
De Novion
,
C. H.
,
1991
, “
Influence of Mn and Ni on Cu Precipitation in Dilute Iron Alloys During Electron Irradiation: A Small-Angle Neutron Scattering Study
,”
J. Nucl. Mater.
,
183
(
3
), pp.
217
220
.
21.
Bonny
,
G.
,
Terentyev
,
D.
,
Bakaev
,
A.
,
Zhurkin
,
E. E.
,
Hou
,
M.
,
Van Neck
,
D.
, and
Malerba
,
L.
,
2013
, “
On the Thermal Stability of Late Blooming Phases in Reactor Pressure Vessel Steels: An Atomistic Study
,”
J. Nucl. Mater.
,
442
(
1–3
), pp.
282
291
.
22.
Mendelev
,
M. I.
,
Han
,
S.
,
Srolovitz
,
D. J.
,
Ackland
,
G. J.
,
Sun
,
D. Y.
, and
Asta
,
M.
,
2003
, “
Development of New Interatomic Potentials Appropriate for Crystalline and Liquid Iron
,”
Philos. Mag.
,
83
(
35
), pp.
3977
3994
.
23.
Mishin
,
Y.
,
Mehl
,
M. J.
,
Papaconstantopoulos
,
D. A.
,
Voter
,
A. F.
, and
Kress
,
J. D.
,
2001
, “
Structural Stability and Lattice Defects in Copper: Ab Initio, Tight-Binding, and Embedded-Atom Calculations
,”
Phys. Rev. B
,
63
(
22
), p.
224106
.
24.
Pasianot
,
R. C.
, and
Malerba
,
L.
,
2007
, “
Interatomic Potentials Consistent With Thermodynamics: The Fe–Cu System
,”
J. Nucl. Mater.
,
360
(
2
), pp.
118
127
.
25.
Bacon
,
D. J.
, and
Osetsky
,
Y. N.
,
2009
, “
Mechanisms of Hardening Due to Copper Precipitates in α-Iron
,”
Philos. Mag.
,
89
(
34–36
), pp.
3333
3349
.
26.
Olsson
,
P.
,
Klaver
,
T. P. C.
, and
Domain
,
C.
,
2010
, “
Ab Initio Study of Solute Transition-Metal Interactions With Point Defects in BCC Fe
,”
Phys. Rev. B
,
81
(
5
), p.
054102
.
27.
Barashev
,
A. V.
, and
Arokiam
,
A. C.
,
2006
, “
Monte Carlo Modelling of Cu Atom Diffusion in α-Fe Via the Vacancy Mechanism
,”
Philos. Mag. Lett.
,
86
(
5
), pp.
321
332
.
28.
Bakaev
,
A.
,
Terentyev
,
D.
,
Bonny
,
G.
,
Klaver
,
T. P. C.
,
Olsson
,
P.
, and
Neck
,
D. V.
,
2014
, “
Interaction of Minor Alloying Elements of High-Cr Ferritic Steels With Lattice Defects: An Ab Initio Study
,”
J. Nucl. Mater.
,
444
(
1–3
), pp.
237
246
.
29.
Varschasky
,
A.
,
1987
, “
Ordering and Solute Segregation to Dislocations in Cu 20at.% Mn
,”
Mater. Sci. Eng.
,
89
, pp.
119
128
.
30.
Terentyev
,
D.
,
Malerba
,
L.
,
Bacon
,
D. J.
, and
Osetsky
,
Y. N.
,
2007
, “
The Effect of Temperature and Strain Rate on the Interaction Between an Edge Dislocation and an Interstitial Dislocation Loop in α-Iron
,”
J. Phys.: Condens. Matter
,
19
(
45
), p.
456211
.
31.
Bacon
,
D. J.
, and
Osetsky
,
Y. N.
,
2004
, “
Hardening Due to Copper Precipitates in α-Iron Studied by Atomic-Scale Modeling
,”
J. Nucl. Mater.
,
329
, pp.
1233
1237
.
32.
Lee
,
T. H.
,
Kim
,
Y. O.
, and
Kim
,
S. J.
,
2007
, “
Crystallographic Model for BCC-to-9R Martensitic Transformation of Cu Precipitates in Ferritic Steel
,”
Philos. Mag.
,
87
(
2
), pp.
209
224
.
33.
Hu
,
S. Y.
,
Li
,
Y. L.
, and
Watanabe
,
K.
,
1999
, “
Calculation of Internal Stresses Around Cu Precipitates in the BCC Fe Matrix by Atomic Simulation
,”
Modell. Simul. Mater. Sci. Eng.
,
7
(
4
), p.
641
.
34.
Shim
,
J. H.
,
Kim
,
D. I.
,
Jung
,
W. S.
,
Cho
,
Y. W.
, and
Wirth
,
B. D.
,
2009
, “
Strengthening of Nanosized BCC Cu Precipitate in BCC Fe: A Molecular Dynamics Study
,”
Mater. Trans.
,
50
(
9
), pp.
2229
2234
.
35.
Osetsky
,
Y. N.
,
Bacon
,
D. J.
, and
Mohles
,
V.
,
2003
, “
Atomic Modelling of Strengthening Mechanisms Due to Voids and Copper Precipitates in α-Iron
,”
Philos. Mag.
,
83
(
31–34
), pp.
3623
3641
.
36.
Scattergood
,
R. O.
, and
Bacon
,
D. J.
,
1982
, “
The Strengthening Effect of Voids
,”
Acta Metall.
,
30
(
8
), pp.
1665
1677
.
37.
Bacon
,
D. J.
,
Kocks
,
U. F.
, and
Scattergood
,
R. O.
,
1973
, “
The Effect of Dislocation Self-Interaction on the Orowan Stress
,”
Philos. Mag.
,
28
(
6
), pp.
1241
1263
.
38.
Heo
,
Y. U.
,
Kim
,
Y. K.
,
Kim
,
J. S.
, and
Kim
,
J. K.
,
2013
, “
Phase Transformation of Cu Precipitates From BCC to FCC in Fe–3Si–2Cu Alloy
,”
Acta Mater.
,
61
(
2
), pp.
519
528
.
39.
Erhart
,
P.
,
Marian
,
J.
, and
Sadigh
,
B.
,
2013
, “
Thermodynamic and Mechanical Properties of Copper Precipitates in α-Iron From Atomistic Simulations
,”
Phys. Rev. B
,
88
(
2
), p.
024116
.
You do not currently have access to this content.