During a severe accident (SA) in a nuclear power plant (NPP), there are several challenges that need to be faced. To coup with a containment overpressure, the venting action will lower the pressure but it will release radioactivity to the environment. In order to reduce the radioactivity released, a filtered containment venting system (FCVS) can be used to retain iodine and aerosols radioactive releases coming from the containment atmosphere. However, during a SA, large quantities of hydrogen can also be generated. Hydrogen reacts violently with oxygen and its combustion could impair systems, components, or structures. For this reason, to protect the integrity of the FCVS against hydrogen explosions, an inertization system is found necessary. This system should create an inert atmosphere previous to any containment venting that impedes the contact of hydrogen and oxygen. In this paper, the inertization system for Cofrentes NPP is presented. It consists of a nitrogen injection located in three different points. A computational model of the FCVS as well as the inertization system has been created. The results show that if the nitrogen sweeps and the containment venting are properly synchronized, the hydrogen risk could be reduced to a minimum and therefore, the integrity of the FCVS would be preserved.

References

References
1.
Kljenak
,
I.
,
Bentaib
,
A.
, and
Jordan
,
T.
,
2012
, “
Early Containment Failure
,”
Nuclear Safety in Light Water Reactors
,
Bal Raj
Seghal
, ed.,
Elsevier
, Amsterdam, The Netherlands, pp.
185
306
.
2.
EPRI
,
2012
, “
Severe Accident Management Guidance Technical Basis Report
,” Electric Power Research Institute, Palo Alto, CA, accessed Dec. 5, 2017, http://www.epri.com/abstracts/Pages/ProductAbstract.aspx?ProductId=000000000001025295
3.
OECD/NEA
,
2014
, “
Status Report on Filtered Containment Venting
,” Organisation for Economic Co-operation and Development/Nuclear Energy Agency, Paris, France, Report No.
NEA/CSNI/R(2014)7
.https://www.oecd-nea.org/nsd/docs/2014/csni-r2014-7.pdf
4.
OECD/NEA
,
1988
, “
Filtered Containment Venting Systems
,” Organisation for Economic Co-operation and Development/Nuclear Energy Agency, Paris, France, Report No.
156
.https://www.oecd-nea.org/nsd/docs/1988/csni88-156.pdf
5.
Boivin
,
P.
,
Jiménez
,
C.
,
Sánchez
,
A. L.
, and
Williams
,
F. A.
,
2011
, “
A Four-Step Reduced Mechanism for Syngas Combustion
,”
Combust. Flame
,
158
(6), pp.
1059
1063
.
6.
Knudson
,
D. L.
,
Rempe
,
J. L.
, and
Lutz
,
R. J.
,
2015
, “
Scoping Study Investigating PWR Instrumentation During a Severe Accident Scenario
,” Idaho National Laboratory, Idaho Falls, ID, Report No.
INL-EXT-15-35940
.https://www.osti.gov/scitech/biblio/1236807-scoping-study-investigating-pwr-instrumentation-during-severe-accident-scenario
7.
Karwat
,
H.
,
Bardelay
,
J.
,
Hashimoto
,
T.
,
Koroll
,
G.
,
Krause
,
M.
,
L'Heriteau
,
J. P.
,
Lundström
,
P.
,
Notafrancesco
,
A.
,
Royl
,
P.
,
Schwinges
,
B.
,
Tezuka
,
H.
,
Tills
,
J.
, and
Royen
,
J.
,
1999
, “
SOAR on Containment Thermalhydraulics and Hydrogen Distribution
,” Organisation for Economic Co-operation and Development/Nuclear Energy Agency, Paris, France, Report No.
NEA/CSNI/R(99)16
.https://www.oecd-nea.org/nsd/docs/1999/csni-r99-16.pdf
8.
OECD/NEA
,
2007
, “
International Standard Problem ISP-47 on Containment Thermal-Hydraulics
,” Organisation for Economic Co-operation and Development/Nuclear Energy Agency, Paris, France, Report No.
NEA/CSNI/R(2007)10
.https://www.oecd-nea.org/nsd/docs/2007/csni-r2007-10.pdf
9.
Abou-Rjeily
,
Y.
,
Cénérino
,
G.
,
Drozd
,
A.
,
Lee
,
S.
,
Misak
,
J.
,
Park
,
C. O.
,
Preusser
,
G.
, and
Vayssier
,
G. L. C. M.
,
2011
, “
IAEA, Mitigation of Hydrogen Hazards in Severe Accidents in Nuclear Power Plants
,” International Atomic Energy Agency, Vienna, Austria, accessed Dec. 5, 2017, http://www-pub.iaea.org/books/IAEABooks/8646/Mitigation-of-Hydrogen-Hazards-in-Severe-Accidents-in-Nuclear-Power-Plants
10.
OECD/NEA
,
2014
, “
Status Report on Hydrogen Management and Related Computer Codes
,” Organisation for Economic Co-operation and Development/Nuclear Energy Agency, Paris, France, Report No.
NEA/CSNI/R(2014)8
.https://inis.iaea.org/search/search.aspx?orig_q=RN:45089843
11.
Royl
,
P.
,
Rochholz
,
H.
,
Breitung
,
W.
,
Travis
,
J.
, and
Necker
,
G.
,
2000
, “
Analysis of Steam and Hydrogen Distributions With PAR Mitigation in NPP Containments
,”
Nucl. Eng. Des.
,
202
(2–3), pp.
231
248
.
12.
Bielert
,
U.
,
Breitung
,
W.
,
Kotchourko
,
A.
,
Royl
,
P.
,
Scholtyssek
,
W.
,
Veser
,
A.
,
Beccantini
,
A.
,
Dabbene
,
F.
,
Paillere
,
H.
,
Studer
,
E.
,
Huld
,
T.
,
Wilkening
,
H.
,
Edlinger
,
B.
,
Poruba
,
C.
, and
Mohaved
,
M.
,
2001
, “
Multi-Dimensional Simulation of Hydrogen Distribution and Turbulent Combustion in Severe Accidents
,”
Nucl. Eng. Des.
,
209
(1–3), pp.
165
172
.
13.
Kim
,
J.
,
Hong
,
S.-W.
,
Kim
,
S.-B.
,
Kim
,
H. D.
,
Lee
,
U.
,
Royl
,
P.
, and
Travis
,
J. R.
,
2004
, “
3-Dimensional Analysis of the Steam-Hydrogen Behavior From a Small Break Loss of Coolant Accident in the APR1400 Containment
,”
J. Korean Nucl. Soc.
,
36
, pp.
24
35
.https://inis.iaea.org/search/search.aspx?orig_q=RN:36085815
14.
Xiao
,
J.
,
Breitung
,
W.
,
Kuznetsov
,
M.
,
Zhang
,
H.
,
Travis
,
J. R.
,
Redlinger
,
R.
, and
Jordan
,
T.
,
2017
, “
GASFLOW-MPI: A New 3-D Parallel All-Speed CFD Code for Turbulent Dispersion and Combustion Simulations—Part II: First Analysis of the Hydrogen Explosion in Fukushima Daiichi Unit 1
,”
Int. J. Hydrogen Energy
,
42
(
12
), pp.
8369
8381
.
15.
Xiao
,
J.
,
Breitung
,
W.
,
Kuznetsov
,
M.
,
Zhang
,
H.
,
Travis
,
J. R.
,
Redlinger
,
R.
, and
Jordan
,
T.
,
2017
, “
GASFLOW-MPI: A New 3-D Parallel All-Speed CFD Code for Turbulent Dispersion and Combustion Simulations—Part I: Models, Verification and Validation
,”
Int. J. Hydrogen Energy
,
42
(12), pp.
8346
8368
.
16.
Papini
,
D.
,
Andreani
,
M.
,
Ničeno
,
B.
,
Prasser
,
H.
,
Scherrer
,
P.
,
Psi
,
I.
, and
Ag
,
K. G.
,
2015
, “
Simulation of Hydrogen Distribution in the Containment During a Severe Accident With Fast Hydrogen-Steam Release
,” 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (
NURETH-16
), Chicago, IL, Aug. 30–Sept. 4, pp.
1474
1487
.http://glc.ans.org/nureth-16/data/papers/13337.pdf
17.
Bocanegra
,
R.
,
Jimenez
,
G.
, and
Fernández-Cosials
,
M. K.
,
2016
, “
Development of a PWR-W GOTHIC 3D Model for Containment Accident Analysis
,”
Ann. Nucl. Energy.
,
87
(
Pt. 2
), pp.
547
560
.
18.
Papini
,
D.
,
Grgić
,
D.
,
Cammi
,
A.
, and
Ricotti
,
M. E.
,
2011
, “
Analysis of Different Containment Models for IRIS Small Break LOCA, Using GOTHIC and RELAP5 Codes
,”
Nucl. Eng. Des.
,
241
(4), pp.
1152
1164
.
19.
Andreani
,
M.
, and
Paladino
,
D.
,
2010
, “
Simulation of Gas Mixing and Transport in a Multi-Compartment Geometry Using the GOTHIC Containment Code and Relatively Coarse Meshes
,”
Nucl. Eng. Des.
,
240
(6), pp.
1506
1527
.
20.
Prabhudharwadkar
,
D. M.
,
Iyer
,
K. N.
,
Mohan
,
N.
,
Bajaj
,
S. S.
, and
Markandeya
,
S. G.
,
2011
, “
Simulation of Hydrogen Distribution in an Indian Nuclear Reactor Containment
,”
Nucl. Eng. Des.
,
241
(
3
), pp.
832
842
.
21.
Visser
,
D. C.
,
Houkema
,
M.
,
Siccama
,
N. B.
, and
Komen
,
E. M. J.
,
2012
, “
Validation of a FLUENT CFD Model for Hydrogen Distribution in a Containment
,”
Nucl. Eng. Des.
,
245
, pp.
161
171
.
22.
Martín-Valdepeñas
,
J. M.
,
Jiménez
,
M. A.
,
Martín-Fuertes
,
F.
, and
Fernández
,
J. A.
,
2007
, “
Improvements in a CFD Code for Analysis of Hydrogen Behaviour Within Containments
,”
Nucl. Eng. Des.
,
237
(6), pp.
627
647
.
23.
Wilkening
,
H.
,
Baraldi
,
D.
, and
Heitsch
,
M.
,
2008
, “
CFD Simulations of Light Gas Release and Mixing in the Battelle Model-Containment With CFX
,”
Nucl. Eng. Des.
,
238
(3), pp.
618
626
.
24.
Heitsch
,
M.
,
Huhtanen
,
R.
,
Téchy
,
Z.
,
Fry
,
C.
,
Kostka
,
P.
,
Niemi
,
J.
, and
Schramm
,
B.
,
2010
, “
CFD Evaluation of Hydrogen Risk Mitigation Measures in a VVER-440/213 Containment
,”
Nucl. Eng. Des.
,
240
(2), pp.
385
396
.
25.
Wilkening
,
H.
, and
Ammirabile
,
L.
,
2013
, “
Simulation of Helium Release in the Battelle Model Containment Facility Using OpenFOAM
,”
Nucl. Eng. Des.
,
265
, pp.
402
410
.
26.
Gallego
,
E.
,
Migoya
,
E.
,
Martín-Valdepeñas
,
J. M.
,
Crespo
,
A.
,
García
,
J.
,
Venetsanos
,
A.
,
Papanikolaou
,
E.
,
Kumar
,
S.
,
Studer
,
E.
,
Dagba
,
Y.
,
Jordan
,
T.
,
Jahn
,
W.
,
Høiset
,
S.
,
Makarov
,
D.
, and
Piechna
,
J.
,
2007
, “
An Intercomparison Exercise on the Capabilities of CFD Models to Predict Distribution and Mixing of H2 in a Closed Vessel
,”
Int. J. Hydrogen Energy
,
32
(13), pp.
2235
2245
.
27.
Andreani
,
M.
,
Badillo
,
A.
, and
Kapulla
,
R.
,
2016
, “
Synthesis of the OECD/NEA-PSI CFD Benchmark Exercise
,”
Nucl. Eng. Des.
,
299
, pp.
59
80
.
28.
Xu
,
Z.
, and
Jordan
,
T.
,
2017
, “
Hydrogen Risk Analysis for a Generic Nuclear Containment Ventilation System
,”
Int. J. Hydrogen Energy.
,
42
(11), pp.
7467
7473
.
29.
Gómez-Torres
,
A. M.
,
Sáinz-Mejía
,
E.
,
Xolocostli-Munguía
,
J. V.
,
López-Morones
,
R.
,
Filio-López
,
C.
, and
Royl
,
P.
,
2015
, “
CFD Analysis of Hydrogen Volumetric Concentrations in a Hard Venting Containment System of a Mark II BWR
,”
Ann. Nucl. Energy
,
85
, pp.
552
565
.
30.
Shapiro
,
Z. M.
, and
Moffette
,
T. R.
,
1957
, “
Hydrogen Flammability Data and Application to PWR Loss-of-Coolant Accident
,” Westinghouse Electric Company, Pittsburgh, PA, Report No.
WAPD-SC-545
.https://www.osti.gov/scitech/servlets/purl/4327402/
31.
Serrano
,
C.
,
Jimenez
,
G.
,
Molina
,
M. D. C.
,
López-Alonso
,
E.
,
Justo
,
D.
,
Zuriaga
,
J. V.
, and
González
,
M.
,
2016
, “
Proposed Methodology for Passive Autocatalytic Recombiner Sizing and Location for a BWR Mark-III Reactor Containment Building
,”
Ann. Nucl. Energy
,
94
, pp.
589
602
.
32.
EPRI
,
2016
, “
GOTHIC Thermal Hydraulic Analysis Package Version 8.2(QA)
,”
Electric Power Research Institute
, Palo Alto, CA.
33.
Andreani
,
M.
,
Paladino
,
D.
, and
George
,
T.
,
2010
, “
Simulation of Basic Gas Mixing Tests With Condensation in the PANDA Facility Using the GOTHIC Code
,”
Nucl. Eng. Des.
,
240
(6), pp.
1528
1547
.
34.
Paladino
,
D.
,
Zboray
,
R.
,
Andreani
,
M.
, and
Dreier
,
J.
,
2010
, “
Flow Transport and Mixing Induced by Horizontal Jets Impinging on a Vertical Wall of the Multi-Compartment PANDA Facility
,”
Nucl. Eng. Des.
,
240
(8), pp.
2054
2065
.
35.
Andreani
,
M.
,
Kapulla
,
R.
, and
Zboray
,
R.
,
2012
, “
Gas Stratification Break-up by a Vertical Jet: Simulations Using the GOTHIC Code
,”
Nucl. Eng. Des.
,
249
, pp.
71
81
.
36.
Andreani
,
M.
,
Haller
,
K.
,
Heitsch
,
M.
,
Hemström
,
B.
,
Karppinen
,
I.
,
Macek
,
J.
,
Schmid
,
J.
,
Paillere
,
H.
, and
Toth
,
I.
,
2008
, “
A Benchmark Exercise on the Use of CFD Codes for Containment Issues Using Best Practice Guidelines: A Computational Challenge
,”
Nucl. Eng. Des.
,
238
(3), pp.
502
513
.
37.
Andreani
,
M.
,
Putz
,
F.
,
Dury
,
T.
,
Gjerloev
,
C.
, and
Smith
,
B.
,
2003
, “
On the Application of Field Codes to the Analysis of Gas Mixing in Large Volumes: Case Studies Using CFX and GOTHIC
,”
Ann. Nucl. Energy.
,
30
(6), pp.
685
714
.
38.
Fernández-Cosials
,
M. K.
,
Jimenez
,
G.
, and
Lopez-Alonso
,
E.
,
2016
, “
Analysis of a Gas Stratification Break-Up by a Vertical Jet Using the GOTHIC Code
,”
Nucl. Eng. Des.
,
297
, pp.
123
135
.
39.
Hultgren
,
A.
,
Gallego-marcos
,
I.
,
Villanueva
,
W.
, and
Kudinov
,
P.
,
2014
, “
Large Scale Erosion of a Helium Stratified Layer by a Vertical Jet Using the GOTHIC Code
,” Tenth International Topical Meeting on Nuclear Thermal-Hydraulics, Operation and Safety (
NUTHOS-10
), Okinawa, Japan, Dec. 14–18, pp.
1
18
.https://inis.iaea.org/search/search.aspx?orig_q=RN:47041283
40.
Jiménez
,
G.
,
Bocanegra
,
R.
,
Fernández-Cosials
,
K.
,
Queral
,
C.
, and
Montero-Mayorga
,
J.
,
2014
, “
Development of a PWR-W and an AP1000 Containment Building 3D Model With a CFD Code for Best-Estimate Thermal-Hydraulic Analysis
,”
ASME
Paper No. ICONE22-30445.
41.
Paladino
,
D.
,
Zboray
,
R.
,
Benz
,
P.
, and
Andreani
,
M.
,
2010
, “
Three-Gas Mixture Plume Inducing Mixing and Stratification in a Multi-Compartment Containment
,”
Nucl. Eng. Des.
,
240
(2), pp.
210
220
.
42.
EEAA
,
2000
, “
VALCON 2.0 User Manual. Dimensioning and Checking of Control Valves
,” Empresarios Agrupados, Madrid, Spain.
43.
EPRI
,
2013
, “
Modular Accident Analysis Program for LWR Power Plants
,” Electric Power Research Institute, Palo Alto, CA.
44.
Stamps
,
D.
, and
Berman
,
M.
,
1991
, “
High-Temperature Hydrogen Combustion in Reactor Safety Applications
,”
Nucl. Sci. Eng.
,
109
(1), pp.
39
48
.
45.
Byun
,
C. S.
,
Jerng
,
D. W.
,
Todreas
,
N. E.
, and
Driscoll
,
M. J.
,
2000
, “
Conceptual Design and Analysis of a Semi-Passive Containment Cooling System for a Large Concrete Containment
,”
Nucl. Eng. Des.
,
199
(3), pp.
227
242
.
46.
Dorofeev
,
S. B.
,
Kuznetsov
,
M. S.
,
Alekseev
,
V. I.
,
Efimenko
,
A. A.
, and
Breitung
,
W.
,
2001
, “
Evaluation of Limits for Effective Flame Acceleration in Hydrogen Mixtures
,”
J. Loss Prev. Process Ind.
,
14
(6), pp.
583
589
.
47.
Breitung
,
W.
, and
Royl
,
P.
,
2000
, “
Procedure and Tools for Deterministic Analysis and Control of Hydrogen Behavior in Severe Accidents
,”
Nucl. Eng. Des.
,
202
(2–3), pp.
249
268
.
48.
Dorofeev
,
S.
,
1996
, “
Deflagration to Detonation Transition in Large Confined Volume of Lean Hydrogen-Air Mixtures
,”
Combustion and Flame.
,
104
(1–2), pp.
95
110
.
49.
Sánchez
,
A. L.
, and
Williams
,
F. A.
,
2014
, “
Recent Advances in Understanding of Flammability Characteristics of Hydrogen
,”
Prog. Energy Combust. Sci.
,
41
, pp.
1
55
.
You do not currently have access to this content.