Evaluation of fuel debris properties in the Fukushima Daiichi nuclear power plant (1F) is required to develop fuel debris removal tools. In the removal of debris resulting from the Three Mile Island unit 2 (TMI-2) accident, a core-boring system played an important role. Considering the working principle of core boring, hardness, elastic modulus, and fracture toughness were found to be important fuel debris properties that profoundly influenced the performance of the boring machine. It is speculated that uranium and zirconium oxide solid solution (U,Zr)O2 is one of the major materials in the fuel debris from 1F. In addition, the Zr content of the fuel debris from 1F is expected to be higher than that of the debris from TMI-2 because the 1F reactors were boiling-water reactors. In this research, the mechanical properties of cubic (U,Zr)O2 samples containing 10%–65% ZrO2 are evaluated. The hardness, elastic modulus, and fracture toughness are measured by the Vickers test, ultrasonic pulse echo method, and indentation fracture method, respectively. In the case of (U,Zr)O2 samples containing less than 50% ZrO2, Vickers hardness and fracture toughness increased, and the elastic modulus decreased slightly with increasing ZrO2 content. Moreover, all of those values of the (U,Zr)O2 samples containing 65% ZrO2 increased slightly compared to (U,Zr)O2 samples containing 55% ZrO2. ZrO2 content affects fracture toughness significantly in the case of samples containing less than 10% ZrO2. Higher Zr content (exceeding 50%) has little effect on the mechanical properties.

References

1.
GPU Nuclear Corporation
,
1990
,
GPU Nuclear. TMI 2 Defueling Completion Report
,
GPU Nuclear Corporation
,
Middletown, PA
.
2.
Holton
,
W. C.
,
Negin
,
C. A.
, and
Owrutsky
,
S. L.
,
1990
,
The Cleanup of Three Mile Island Unit 2: A Technical History: 1979-1990
,
EPRI NP-6931, Electric Power Research Institute
,
Palo Alto, CA
.
3.
Bechtel North American Power Corporation
,
1986
, “
TMI-2 Defueling Tools Engineering Report
,” EG and G Idaho, Inc, Idaho Falls, ID, Report No.
GEND-INF-073
.https://inis.iaea.org/search/search.aspx?orig_q=RN:17069450
4.
Yano
,
K.
,
Kitagaki
,
T.
,
Ikeuchi
,
H.
,
Wakui
,
R.
,
Higuchi
,
H.
,
Kaji
,
N.
,
Koizumi
,
K.
, and
Washiya
,
T.
,
2013
, “
Direction on Characterization of Fuel Debris for Defueling Process in Fukushima Daiichi Nuclear Power Station
,”
GLOBAL2013
, American Nuclear Society, Salt Lake City, UT, Sept. 29−Oct. 3, pp.
1554
1559
.https://inis.iaea.org/search/search.aspx?orig_q=RN:45085452
5.
Akers
,
D. W.
,
Mccardell
,
R. K.
,
Russell
,
M. L.
, and
Worku
,
G.
,
1990
, “
TMI-2 Core Materials and Fission Product Inventory
,”
Nucl. Eng. Des.
,
118
(
3
), pp.
451
461
.
6.
Ikeuchi
,
H.
,
Kondo
,
Y.
,
Noguchi
,
Y.
,
Yano
,
K.
,
Kaji
,
N.
, and
Washiya
,
T.
,
2013
, “
Suggestion of Typical Phases of In-Vessel Fuel-Debris by Thermodynamic Calculation for Decommissioning Technology of Fukushima-Daiichi Nuclear Power Station
,”
GLOBAL2013
, American Nuclear Society, Salt Lake City, UT, Sept. 29−Oct. 3, pp.
1349
1356
.https://www.osti.gov/biblio/22264192
7.
Cohen
,
I.
, and
Schaner
,
B. E.
,
1963
, “
A Metallographic and X-Ray Study of the UO2-ZrO2 System
,”
J. Nucl. Mater.
,
9
(
1
), pp.
18
52
.
8.
Yamada
,
K.
,
Yamanaka
,
S.
, and
Katsura
,
M.
,
1998
, “
Mechanical Properties of (U,Ce)O2
,”
J. Alloys Compounds
,
271–273
, pp.
697
701
.
9.
Shackelford
,
J. F.
, and
Alexander
,
W.
,
2001
,
Materials Science and Engineering Handbook Third Edition
,
CRC Press
,
Boca Raton, FL
.
10.
Wright
,
T. R.
,
Kizer
,
D. E.
, and
Keller
,
D. L.
,
1964
, “
Studies in the UO2-ZrO2 System
,” UC-25 Metals, Ceramics, and Materials, Battelle Memorial Institute, Columbus, OH, Report No. BMI-1689.
11.
Hagrman
,
D. L.
, and
Reymann
,
G. A.
,
1979
, “
Matpro-Version11 a Handbook of Materials Properties for Use in the Analysis of Light Water Reactor Fuel Rod Behavior
,” EG&G Idaho, Idaho Falls, ID, Report No.
NUREG/CR-0497 TREE-1280 R3
.https://www.osti.gov/biblio/6442256
12.
Adams
,
J. W.
,
Ruh
,
R.
, and
Mazdiyasni
,
K. S.
,
1997
, “
Young's Modulus, Flexural Strength, and Fracture of Yttria-Stabilized Zirconia Versus Temperature
,”
J. Am. Ceram. Soc.
,
80
(
4
), pp.
903
908
.
13.
Igata
,
N.
, and
Domoto
,
K.
,
1973
, “
Fracture Stress and Elastic Modulus of Uranium Dioxide Including Excess Oxygen
,”
J. Nucl. Mater.
,
45
(
4
), pp.
317
322
.
14.
Kutty
,
T. R. G.
,
Chandrasekharan
,
K. N.
,
Panakkal
,
J. P.
, and
Ghosh
,
J. K.
,
1987
, “
Fracture Toughness and Fracture Surface Energy of Sintered Uranium Dioxide Fuel Pellets
,”
J. Mater. Sci. Lett.
,
6
(
3
), pp.
260
262
.
15.
Winnubst
,
A. J. A.
,
Keizer
,
K.
, and
Burggraaf
,
A. J.
,
1983
, “
Mechanical Properties and Fracture Behavior of ZrO2-Y2O3 Ceramics
,”
J. Mater. Sci.
,
18
(
7
), pp.
1958
1966
.
16.
Lake
,
L. W.
,
2007
,
Petroleum Engineering Handbook, Volume II Drilling Engineering
,
Society of Petroleum Engineers
,
Richardson, TX
.
17.
Kirkland
,
H. W.
,
Nemser
,
M. A.
, and
Laney
,
W. M.
,
1989
, “
Drilling Operations to Remove the Lower Core Support Assembly at Three Mile Island Unit 2
,”
Nucl. Technol.
,
87
(
4
), pp.
932
945
.
18.
Editorial Committee of Handbook of Ceramics Processing
,
1987
,
Handbook of Ceramics Processing
,
The Construction Industry Research Institute
,
Tokyo, Japan
.
You do not currently have access to this content.