Nuclear fuel rods operate under complex radioactive, thermal, and mechanical conditions. Nowadays, fuel rod codes usually make great simplifications on analyzing the multiphysics behavior of fuel rods. The present study develops a three-dimensional (3D) module within the framework of a general-purpose finite element solver, i.e., abaqus, for modeling the major physics of the fuel rods. A typical fuel rod, subjected to stable operations and transient conditions, is modeled. The results show that the burnup levels have an important influence on the thermomechanical behavior of fuel rods. The swelling of fission products causes a dramatically increasing strain of pellets. The variation of the stress and the radial displacement of the cladding along the axial direction can be reasonably predicted. It is shown that a quick power ramp or a reactivity insertion accident can induce high tensile stress in the outer regime of the pellet and may cause further fragmentation to the pellets. Fission products migration effects and differential thermal expansion become more severe if there are flaws or imperfections on the pellet.

References

1.
Hann
,
C. R.
,
Beyer
,
C. E.
, and
Parchen
,
L. J.
,
1973
, “
GAPCON-THERMAL-1: A Computer Program for Calculating the Gap Conductance in Oxide Fuel Pins
,” Battelle Pacific Northwest Labs, Richland, WA, accessed Apr. 11, 2018, https://www.osti.gov/biblio/4428219
2.
Rashid
,
Y.
,
Dunham
,
R.
, and
Montgomery
,
R.
,
2004
, “
Fuel Analysis and Licensing Code: Falcon MOD01
,” Electric Power Research Institute, Palo Alto, CA, Report No.
1011308
.https://www.epri.com/#/pages/product/1011308/
3.
Nakajima
,
T.
,
Saito
,
H.
, and
Osaka
,
T.
,
1994
, “
FEMAXI-IV: A Computer Code for the Analysis of Thermal and Mechanical Behavior of Light Water Reactor Fuel Rods
,”
Nucl. Eng. Des.
,
148
(
1
), pp.
41
52
.
4.
Lanning
,
D.
,
Beyer
,
C.
, and
Painter
,
C.
,
1997
, “
FRAPCON-3: Modifications to Fuel Rod Material Properties and Performance Models for High-Burnup Application
,” Vol. 1, U.S. Nuclear Regulatory Commission, Washington, DC, Report No.
NUREG/CR-6534
.https://inis.iaea.org/search/search.aspx?orig_q=RN:29036403
5.
Geelhood
,
K.
,
Luscher
,
W.
,
Beyer
,
C.
, and
Cuta
,
J.
,
2011
, “
FRAPTRAN 1.4: A Computer Code for the Transient Analysis of Oxide Fuel Rods
,” Vol. 1, U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, Washington, DC, Report No.
NUREG/CR-7023
.https://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr7023/v1/
6.
Bentejac
,
F.
, and
Hourdequin
,
N.
,
2005
, “
TOUTATIS: An Application of the Cast3M Finite Element Code for PCI Three-Dimensional Modeling
,”
Seminar: Pellet–Clad Interaction in Water Reactor Fuels
, Aix-en-Provence, France, Mar. 9–11, pp.
495
506.
https://inis.iaea.org/search/search.aspx?orig_q=RN:37021762
7.
Baurens, B., Sercombe, J., Riglet-Martial, C., and Desgranges, L., 2014, “
3D Thermo-Chemical—Mechanical Simulation of Power Ramps With ALCYONE Fuel Code
,”
J. Nucl. Mater.
,
452
(1–3), pp. 578–594.
8.
Williamson
,
R.
,
Hales
,
J.
,
Novascone
,
S.
,
Tonks
,
M.
,
Gaston
,
D.
,
Permann
,
C.
,
Andrs
,
D.
, and
Martineau
,
R.
,
2012
, “
Multidimensional Multiphysics Simulation of Nuclear Fuel Behavior
,”
J. Nucl. Mater.
,
423
(
1–3
), pp.
149
163
.
9.
Prudil
,
A.
,
Lewis
,
B.
,
Chan
,
P.
, and
Baschuk
,
J.
,
2015
, “
Development and Testing of the Fast Fuel Performance Code: Normal Operating Conditions—Part 1
,”
Nucl. Eng. Des.
,
282
, pp.
158
168
.
10.
Prudil
,
A.
,
Lewis
,
B.
,
Chan
,
P.
,
Baschuk
,
J.
, and
Wowk
,
D.
,
2015
, “
Development and Testing of the Fast Fuel Performance Code: Transient Conditions—Part 2
,”
Nucl. Eng. Des.
,
282
, pp.
169
177
.
11.
Shaheen
,
K.
,
2011
, “
A Mechanistic Code for Intact and Defective Nuclear Fuel Element Performance
,”
Ph.D. thesis
, Royal Military College of Canada, Ottawa, ON, Canada, p.
3917
.
12.
Notley
,
M. J. F.
,
1979
, “
ELESIM: A Computer Code for Predicting the Performance of Nuclear Fuel Elements
,”
Nucl. Technol.
,
44
(
3
), pp.
445
450
.
13.
Chassie
,
G.
,
2005
, “
ELESTERS Code Upgrades
,”
Ninth International Conference on CANDU Fuel
, Belleville, ON, Sept. 18–21.
14.
Williams
,
A.
,
2005
, “
The ELOCA Fuel Modelling Code: Past, Present and Future
,”
Ninth International Conference on CANDU Fuel
, Belleville, ON, Sept. 18–21.
15.
Hibbitt
,
D.
,
Karlsson
,
B.
, and
Sorensen
,
P.
,
2014
, “
ABAQUS/Standard User's Manual
,” Version 6.14, Dassault Systèmes Simulia Corporation, Providence, RI.
16.
Lucuta
,
P.
,
Matzke
,
H.
, and
Hastings
,
I.
,
1996
, “
A Pragmatic Approach to Modelling Thermal Conductivity of Irradiated UO2 Fuel: Review and Recommendations
,”
J. Nucl. Mater.
,
232
(
2–3
), pp.
166
180
.
17.
Fink
,
J.
,
Chasanov
,
M.
, and
Leibowitz
,
L.
,
1981
, “
Thermophysical Properties of Uranium Dioxide
,”
J. Nucl. Mater.
,
102
(
1–2
), pp.
17
25
.
18.
Allison
,
C. M.
, and
Berna
,
G. A.
,
1993
, “
SCDAP/RELAP5/MOD 3.1 Code Manual: MATPRO, a Library of Materials Properties for Light-Water-Reactor Accident Analysis
,” Vol.
4
, Nuclear Regulatory Commission, Washington, DC, Technical Report No.
NUREG/CR-6150
.https://inis.iaea.org/search/search.aspx?orig_q=RN:27008533
19.
Lyon
,
W.
,
Jahingir
,
N.
,
Montgomery
,
R.
, and
Yagnik
,
S.
,
2004
, “
Capabilities of the Falcon Steady State and Transient Fuel Performance Code
,”
International Meeting on LWR Fuel Performance
, Orlando, FL, Sept. 19–22, Paper No. 1090.https://www.researchgate.net/publication/266447134_Capabilities_of_the_FALCON_Steady_State_and_Transient_Fuel_Performance_Code
20.
Hayes
,
T. A.
, and
Kassner
,
M. E.
,
2006
, “
Creep of Zirconium and Zirconium Alloys
,”
Metall. Mater. Trans. A
,
37A
(
8
), pp.
2389
2396
.
21.
Moon
,
J.
,
Cantonwine
,
P.
,
Anderson
,
K. R.
,
Karthikeyan
,
S.
, and
Mills
,
M.
,
2006
, “
Characterization and Modeling of Creep Mechanisms in Zircaloy-4
,”
J. Nucl. Mater.
,
353
(
3
), pp.
177
189
.
22.
Hoppe
,
N.
,
1991
, “
Engineering Model for Zircaloy Creep and Growth
,”
ANS-ENS International Topical Meeting on LWR Fuel Performance
, Avignon, France, Apr. 21–24, pp.
157
172
.
23.
Williamson
,
R.
,
2011
, “
Enhancing the ABAQUS Thermo-Mechanics Code to Simulate Multipellet Steady and Transient LWR Fuel Rod Behavior
,”
J. Nucl. Mater.
,
415
(
1
), pp.
74
83
.
24.
Ross
,
A.
, and
Stoute
,
R.
,
1962
, “
Heat Transfer Coefficient Between UO2 and Zircaloy-2
,” Atomic Energy of Canada Limited, Chalk River, ON, Canada, Report No.
CRFD-1075
.http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/43/103/43103492.pdf
25.
Olander
,
D. R.
,
1976
, “
Fundamental Aspects of Nuclear Reactor Fuel Elements
,” California University, Berkeley, CA, accessed Apr. 11, 2018, https://www.osti.gov/servlets/purl/7343826
26.
Perez
,
D.
,
Williamson
,
R.
,
Novascone
,
S.
,
Larson
,
T.
,
Hales
,
J.
,
Spencer
,
B.
, and
Pastore
,
G.
,
2013
, “
An Evaluation of the Nuclear Fuel Performance Code
,” Vol. 81, Office of Scientific and Technical Information Reports, Report No. INL/CON-13-28093.
27.
Meyer
,
R. O.
,
2013
, “
Fuel Behavior Under Abnormal Conditions
,” U.S. Nuclear Regulatory Commission, Washington, DC, Report No.
NUREG/KM-0004
.https://www.nrc.gov/reading-rm/doc-collections/nuregs/knowledge/km0004/
28.
Geelhood
,
K.
,
Beyer
,
C.
, and
Cunningham
,
M.
,
2004
, “
Modifications to FRAPTRAN to Predict Fuel Rod Failures Due to PCMI During RIA-Type Accidents
,”
International Meeting on LWR Fuel Performance
, Orlando, FL, Sept. 19–22, pp. 585–595.
29.
Desquines
,
J.
,
Koss
,
D.
,
Motta
,
A.
,
Cazalis
,
B.
, and
Petit
,
M.
,
2011
, “
The Issue of Stress State During Mechanical Tests to Assess Cladding Performance During a Reactivity-Initiated Accident (RIA)
,”
J. Nucl. Mater.
,
412
(
2
), pp.
250
267
.
30.
Reynolds
,
R.
, and
Willse
,
J.
,
2004
, “
Recent Framatome ANP Fuel Experience
,”
International Meeting on LWR Fuel Performance
, Orlando, FL, Sept. 19–22, pp. 249–262.
You do not currently have access to this content.