The effective thermal diffusivity and conductivity of pebble bed in the high temperature gas-cooled reactor (HTGR) are two vital parameters to determine the operating temperature and power in varisized reactors with the restriction of inherent safety. A high-temperature heat transfer test facility and its inverse method for processing experimental data are presented in this work. The effective thermal diffusivity as well as conductivity of pebble bed will be measured at temperature up to 1600 °C in the under-construction facility with the full-scale in radius. The inverse method gives a global optimal relationship between thermal diffusivity and temperature through those thermocouple values in the pebble bed facility, and the conductivity is obtained by conversion from diffusivity. Furthermore, the robustness and uncertainty analyses are also set forth here to illustrate the validity of the algorithm and the corresponding experiment. A brief experimental result of preliminary low-temperature test is also presented in this work.

References

1.
Zhang
,
Z.
,
Wu
,
Z.
,
Wang
,
D.
,
Xu
,
Y.
,
Sun
,
Y.
,
Li
,
F.
, and
Dong
,
Y.
,
2009
, “
Current Status and Technical Description of Chinese 2 × 250 MWth HTR-PM Demonstration Plant
,”
Nucl. Eng. Des.
,
239
(
7
), pp.
1212
1219
.
2.
Zhang
,
Z.
,
Wu
,
Z.
,
Sun
,
Y.
, and
Li
,
F.
,
2006
, “
Design Aspects of the Chinese Modular High-Temperature Gas-Cooled Reactor HTR-PM
,”
Nucl. Eng. Des.
,
236
(
5–6
), pp.
485
490
.
3.
Dong
,
Y.
, and
Gao
,
Z.
,
2006
, “
Thermal–Hydraulic Feasibility Analysis on Uprating the HTR–PM
,”
Nucl. Eng. Des.
,
236
(
5–6
), pp.
510
515
.
4.
IAEA,
2001
, “Heat Transport and Afterheat Removal for Gas Cooled Reactors Under Accident Conditions,” International Atomic Energy Agency, Vienna, Austria, Report No.
IAEA-TECDOC-1163
.http://www-pub.iaea.org/MTCD/Publications/PDF/te_1163_prn.pdf
5.
Stewart
,
D. A.
,
Leiser
,
D. B.
,
Kolodziej
,
P.
, and
Smith
,
M.
,
1986
, “
Thermal Response of Integral, Multicomponent Composite Thermal Protection Systems
,”
J. Spacecr. Rockets
,
23
(
4
), pp.
420
427
.
6.
Achenbach
,
E.
,
1995
, “
Heat and Flow Characteristics of Packed Beds
,”
Exp. Therm. Fluid Sci.
,
10
(
1
), pp.
17
27
.
7.
Zehner
,
P.
, and
Schlünder
,
E. U.
,
1970
, “
Wärmeleitfähigkeit von schüttungen bei Mäßigen temperature
,”
Chem. Ing. Tech.
,
42
(
14
), pp.
933
941
.
8.
du Toit
,
C. G.
,
Rousseau
,
P. G.
,
Greyvenstein
,
G. P.
, and
Landman
,
W. A.
,
2006
, “
A Systems CFD Model of a Packed Bed High Temperature Gas-Cooled Nuclear Reactor
,”
Int. J. Therm. Sci.
,
45
(
1
), pp.
70
85
.
9.
Rousseau
,
P. G.
,
du Toit
,
C. G.
, and
Landman
,
W. A.
,
2006
, “
Validation of a Transient Thermal-Fluid Systems CFD Model for a Packed Bed High Temperature Gas-Cooled Nuclear Reactor
,”
Nucl. Eng. Des.
,
236
(
5–6
), pp.
555
564
.
10.
Stöcker
,
B.
, and., and
Niesses
,
H. F.
,
1997
, “Data Sets of the SANA Experiment 1994-1996,” Forschungszentrum Jülich, Jülich, Germany, Report No.
JUEL–3409
.https://inis.iaea.org/search/search.aspx?orig_q=RN:29000791
11.
Rousseau
,
P. G.
, and
van Staden
,
M.
,
2008
, “
Introduction to the PBMR Heat Transfer Test Facility
,”
Nucl. Eng. Des.
,
238
(
11
), pp.
3060
3072
.
12.
du Toit
,
C. G.
, and
Rousseau
,
P. G.
,
2012
, “
Modeling the Flow and Heat Transfer in a Packed Bed High Temperature Gas-Cooled Reactor in the Context of a Systems CFD Approach
,”
ASME J. Heat Transfer
,
134
(
3
), p.
031015
.
13.
Rousseau
,
P. G.
,
du Toit
,
C. G.
,
van Antwerpen
,
W.
, and
van Antwerpen
,
H. J.
,
2014
, “
Separate Effects Tests to Determine the Effective Thermal Conductivity in the PBMR HTTU Test Facility
,”
Nucl. Eng. Des.
,
271
, pp.
444
458
.
14.
du Toit
,
C. G.
,
Rousseau
,
P. G.
, and
Kgame
,
T. L.
,
2014
, “
Separate Effects Tests to Determine the Thermal Dispersion in Structured Pebble Beds in the PBMR HPTU Test Facility
,”
Nucl. Eng. Des.
,
271
, pp.
437
443
.
15.
Ren
,
C.
,
Yang
,
X.
,
Li
,
C.
,
Liu
,
Z.
, and
Jiang
,
S.
,
2014
, “
Design of the Essential Material Test Equipment for the Pebble Bed Effective Thermal Conductivity Measurement Experiment
,”
ASME
Paper No. ICONE21-15097.
16.
Ren
,
C.
,
Yang
,
X.
,
Li
,
C.
,
Sun
,
Y.
, and
Jiang
,
S.
,
2014
, “
Heating System Design and Validation for the Pebble Bed Effective Thermal Conductivity Experiment in a High Temperature Gas-Cooled Reactor
,”
J. Tsinghua Univ. Sci. Technol.
,
54
(
8
), pp.
1068
1072
(in Chinese).
17.
Li
,
R.
,
Ren
,
C.
,
Li
,
C.
,
Sun
,
Y.
,
Liu
,
Z.
, and
Yang
,
X.
,
2015
, “
Temperature Measurement System Design for Effective Thermal Conductivity of Pebble Bed Reactor
,”
At. Energy Sci. Technol.
,
49
(
S1
), pp.
305
311
(in Chinese).
18.
Ren
,
C.
,
Yang
,
X.
,
Li
,
C.
,
Sun
,
Y.
, and
Liu
,
Z.
,
2015
, “
Modeling of the Heat Transfer Characteristics of the Effective Thermal Conductivity Test Facility for High Temperature Gas-Cooled Reactors
,”
J. Tsinghua Univ. Sci. Technol.
,
55
(
9
), pp.
991
997
(in Chinese).
19.
Jarny
,
Y.
,
Ozisik
,
M. N.
, and
Bardon
,
J. P.
,
1991
, “
A General Optimization Method Using Adjoint Equation for Solving Multidimensional Inverse Heat-Conduction
,”
Int. J. Heat Mass Transfer
,
34
(
11
), pp.
2911
2919
.
20.
Daryabeigi
,
K.
,
2003
, “
Heat Transfer in High-Temperature Fibrous Insulation
,”
J. Thermophys. Heat Transfer
,
17
(
1
), pp.
10
20
.
21.
Huang
,
C.
, and
Zhang
,
Y.
,
2014
, “
Calculation of High-Temperature Insulation Parameters and Heat Transfer Behaviors of Multilayer Insulation by Inverse Problems Method
,”
Chin. J. Aeronaut.
,
27
(
4
), pp.
791
796
.
22.
Da Silva
,
C. K. F.
,
Da Silva
,
Z. E.
, and
Mariani
,
V. C.
,
2009
, “
Determination of the Diffusion Coefficient of Dry Mushrooms Using the Inverse Method
,”
J. Food Eng.
,
95
(
1
), pp.
1
10
.
23.
Mejias
,
M. M.
,
Orlande
,
H. R. B.
, and
Ozisik
,
M. N.
,
1999
, “
A Comparison of Different Parameter Estimation Techniques for the Identification of Thermal Conductivity Components of Orthotropic Solids
,”
Third International Conference on Inverse Problems in Engineering
, Port Ludlow, WA, June 13–18.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.390.8428&rep=rep1&type=pdf
24.
Beck
,
J. V.
, and
Woodbury
,
K. A.
,
1998
, “
Inverse Problems and Parameter Estimation: Integration of Measurements and Analysis
,”
Meas. Sci. Technol.
,
9
(
6
), pp.
839
847
.
25.
Levenberg
,
K.
,
1944
, “
A Method for the Solution of Certain Non-Linear Problems in Least Squares
,”
Q. Appl. Math.
,
2
, pp.
164
168
.
26.
Marquardt
,
D. W.
,
1963
, “
An Algorithm for Least Squares Estimation of Nonlinear Parameters
,”
J. Soc. Ind. Appl. Math.
,
11
(
2
), pp.
431
441
.
27.
Beck
,
J. V.
, and
Arnold
,
K. J.
,
1977
,
Parameter Estimation in Engineering and Science
,
Wiley
,
New York
.
28.
Le Niliot
,
C.
, and
Lefèvre
,
F.
,
2004
, “
A Parameter Estimation Approach to Solve the Inverse Problem of Point Heat Sources Identification
,”
Int. J. Heat Mass Transfer
,
47
(
4
), pp.
827
841
.
29.
Ukrainczyk
,
N.
,
2009
, “
Thermal Diffusivity Estimation Using Numerical Inverse Solution for 1D Heat Conduction
,”
Int. J. Heat Mass Transfer
,
52
(
25–26
), pp.
5675
5681
.
You do not currently have access to this content.