Supercritical fluids show great potential as future coolants for nuclear reactors, thermal power, and solar power plants. Compared to the subcritical condition, supercritical fluids show advantages in heat transfer due to thermodynamic properties near the critical point. A specific field of interest is an innovative decay heat removal system for nuclear power plants, which is based on a turbine-compressor system with supercritical CO2 as the working fluid. In case of a severe accident, this system converts the decay heat into excess electricity and low-temperature waste heat, which can be emitted to the ambient air. To guarantee the retrofitting of this decay heat removal system into existing nuclear power plants, the heat exchanger (HE) needs to be as compact and efficient as possible. Therefore, a diffusion-bonded plate heat exchanger (DBHE) with mini channels was developed and manufactured. This DBHE was tested to gain data of the transferable heat power and the pressure loss. A multipurpose facility has been built at Institut für Kernenergetik und Energiesysteme (IKE) for various experimental investigations on supercritical CO2, which is in operation now. It consists of a closed loop where the CO2 is compressed to supercritical state and delivered to a test section in which the experiments are run. The test facility is designed to carry out experimental investigations with CO2 mass flows up to 0.111 kg/s, pressures up to 12 MPa, and temperatures up to 150 °C. This paper describes the development and setup of the facility as well as the first experimental investigation.

References

References
1.
Verein Deutscher Ingenieure
,
2013
,
VDI-Wärmeatlas
, Vol.
11
,
Springer VDI
,
Berlin
.
2.
Shitsman
,
M. E.
,
1963
, “
Impairment of the Transmission at Supercritical Pressures
,”
Teplofiz. Vysokih Temp.
,
1
(
2
), pp.
237
244
.http://www.mathnet.ru/links/7107098dba11301da2dbd58e16e8ea69/tvt476.pdf
3.
Shiralkar
,
B. S.
, and
Griffith
,
P.
,
1969
, “
Deterioration in Heat Transfer to Fluids at Supercritical Pressure and High Fluxes
,”
ASME. J. Heat Transfer
,
91
(
1
), pp.
27
36
.
4.
Jackson
,
J. D.
, and
Hall
,
W. B.
,
1979
, “
Forced Convection Heat Transfer to Fluids at Supercritical Pressure
,”
Turbulent Forced Convection in Channels and Bundles
,
Hemisphere Publishing
,
New York
, pp.
563
611
.
5.
Razumovskiy
,
V. G.
,
Ornatskiy
,
A. P.
, and
Mayevskiy
,
Y. M.
,
1990
, “
Local Heat Transfer and Hydraulic Behavior in Turbulent Channel Flow of Water at Supercritical Pressure
,”
Heat Transfer-Sov. Res.
,
22
, pp.
91
102
.
6.
Dostal
,
V.
,
Driscoll
,
M. J.
, and
Heijzlar
,
P.
,
2004
, “
A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors
,” Massachusetts Institute of Technology, Cambridge, MA, No.
MIT-ANP-TR-100
.https://dspace.mit.edu/handle/1721.1/17746
7.
Venker
,
J.
,
2013
, “
A Passive Heat Removal Retrofit for BWRs
,”
Nucl. Eng. Int.
,
58
, pp.
14
17
.
8.
Tsuzuki
,
N.
,
Kato
,
Y.
, and
Ishiduka
,
T.
,
2007
, “
High-Performance Printed Circuit Heat Exchanger
,”
Appl. Therm. Eng.
,
27
(
10
), pp.
1702
1707
.
9.
Pitla
,
S.
,
Groll
,
E. A.
, and
Ramadhyani
,
S.
,
2002
, “
New Correlation to Predict the Heat Transfer Coefficient During In-Tube Cooling of Turbulent Supercritical CO2
,”
Int. J. Refrig.
,
25
(
7
), pp.
887
895
.
10.
Yoon
,
S. H.
,
Kim
,
J. H.
,
Hwang
,
Y. W.
,
Kim
,
M. S.
,
Min
,
K.
, and
Kim
,
Y.
,
2003
, “
Heat Transfer and Pressure Drop Characteristics During the In-Tube Cooling Process of Carbon Dioxide in the Supercritical Region
,”
Int. J. Refrig.
,
26
(8), pp.
857
864
.
11.
Le Pierres
,
R.
,
Southall
,
D.
, and
Osborne
,
S.
,
2011
, “
Impact of Mechanical Design Issues on Printed Circuit Heat Exchangers
,”
sCO2 Power Cycle Symposium
, Boulder, CO, May 24–25.https://www.heatric.com/hres/Heatric%20S-CO2%20symposium%20paper
12.
Kruizenga
,
A.
,
Anderson
,
M.
,
Fatima
,
R.
,
Corradini
,
M.
,
Towne
,
A.
, and
Devesh
,
R.
,
2011
, “
Heat Transfer of Supercritical Carbon Dioxide in Printed Circuit Heat Exchanger Geometries
,”
ASME J. Therm. Sci. Eng. Appl.
,
3
(
3
), p.
031002
.
13.
Song
,
J. H.
,
Kim
,
H. Y.
,
Kim
,
H.
, and
Bae
,
Y. Y.
,
2008
, “
Heat Transfer Characteristics of a Supercritical Fluid Flow in a Vertical Pipe
,”
J. Supercrit. Fluids
,
44
(
2
), pp.
164
171
.
14.
Simões
,
P. C.
,
Fernandes
,
J.
, and
Mota
,
J. P.
,
2005
, “
Dynamic Model of a Supercritical Carbon Dioxide Heat Exchanger
,”
J. Supercrit. Fluids
,
35
(
2
), pp.
167
173
.
15.
Carlson
,
M. D.
,
Kruizenga
,
A.
,
Anderson
,
M.
, and
Corradini
,
M.
,
2011
, “
Measurements of Heat Transfer and Pressure Drop Characteristics of Supercritical Carbon Dioxide Flowing in Zig-Zag Printed Circuit Heat Exchanger Channels
,”
Supercritical CO2 Power Cycle Symposium
, Boulder, CO, May 24–25.http://www.sco2powercyclesymposium.org/resource_center/fluid_mechanics/measurements-of-heat-transfer-and-pressure-drop-characteristics-of-supercritical-carbon-dioxide-flowing-in-zig-zag-printed-circuit-heat-exchanger-channels
16.
Wright
,
S. A.
,
Radel
,
R. F.
,
Vernon
,
M. E.
,
Rochau
,
G. E.
, and
Pickard
,
P. S.
,
2010
, “
Operation and Analysis of a Supercritical CO2 Brayton Cycle
,” Sandia National Laboratories, Albuquerque, NM, Report No.
SAND2010-0171
.http://prod.sandia.gov/techlib/access-control.cgi/2010/100171.pdf
17.
Swapnalee
,
B. T.
,
Vijayan
,
P. K.
,
Sharma
,
M.
, and
Pilkhwal
,
D. S.
,
2012
, “
Steady State Flow and Static Instability of Supercritical Natural Circulation Loops
,”
Nucl. Eng. Des.
,
245
, pp.
99
112
.
18.
Bertele
,
G.
,
2017
, “
Modellierung einer sCO2-Versuchsanlage
,” University of Stuttgart, Stuttgart, Germany, Report No. 8D-109.
19.
DIN,
2011
, “
Unbefeuerte Druckbehälter—Teil 3: Konstruktion
,” DIN, Berlin, Report No. EN 13445-3:2011-12.
20.
Dang
,
C.
,
Hoshika
,
K.
, and
Hihara
,
E.
,
2012
, “
Effect of Lubricating Oil on the Flow and Heat-Transfer Characteristics of Supercritical Carbon Dioxide
,”
Int. J. Refrig.
,
35
(
5
), pp.
1410
1417
.
21.
Bundesministerium für Arbeit und Soziales
,
2006
, “
Technische Regeln für Gefahrstoffe, TRGS 900
,”
Gemeinsames Ministerialblatt BArBl
, Berlin, Vol.
1
, pp.
41
55
.
22.
Das Europäische Parlament und der Rat der Europäischen Union,
1997
, “
RICHTLINIE 97/23/EG DES EUROPÄISCHEN PARLAMENTS UND DES RATES vom 29. Mai 1997 zur Angleichung der Rechtsvorschriften der Mitgliedstaaten über Druckgeräte
,” ABl. L 181, p.
1
.
23.
DIN
,
2012
, “
Kälteanlagen und Wärmepumpen—Sicherheitstechnische und Umweltrelevante Anforderungen
,” DIN, Berlin, No. EN 378-1:2008+A2:2012.
24.
Seewald
,
M.
,
2002
, “
Verstehen durch Sehen—Thermohydraulik am Glasmodell eines Druckwasserreaktors
,”
ATW
,
57
(
8/9
), pp.
515
519
.
25.
Hesselgreave
,
J.
,
2001
,
Compact Heat Exchangers, Selection, Design, and Operation
,
Pergamon
,
New York
.
26.
Strätz
,
M.
,
Mertz
,
R.
, and
Starflinger
,
J.
,
2016
, “
Power Cycle Calculations and Preliminary Design of a Compact Heat Exchanger of a Scaled Down sCO2-HeRo-System for a PWR Glass Model at KSG/GfS
,”
First European Seminar on Supercritical CO2 (sCO2) Power Systems
, Wien, Austria, Sept. 29–30.
27.
Firouzdor
,
V.
,
Sridharan
,
K.
,
Cao
,
G.
,
Anderson
,
M.
, and
Allen
,
T. R.
,
2013
, “
Corrosion of a Stainless Steel and Nickel-Based Alloys in High Temperature Supercritical Carbon Dioxide Environment
,”
Corros. Sci.
,
69
, pp.
281
291
.
28.
Mylavarapu
,
S. K.
,
Sun
,
X.
,
Christensen
,
R. N.
,
Unoric
,
R. R.
,
Glosup
,
R. E.
, and
Patterson
,
M. W.
,
2012
, “
Fabrication and Design Aspects of High-Temperature Compact Diffusion Bonded Heat Exchangers
,”
Nucl. Eng. Des.
,
249
, pp.
49
56
.
29.
Carlson
,
M.
,
Conboy
,
T.
,
Fleming
,
D.
, and
Pasch
,
J.
,
2014
, “
Scaling Considerations for sCO2 Cycle Heat Exchangers
,”
ASME
Paper No. GT2014-27233.
30.
Haufler
,
G.
, and
Mayer
,
H. G.
,
1989
, “
Diffusionsschweißen von Warmarbeitsstählen für Spritzgießwerkzeuge
,” DVS-Berichte Band 125.
31.
Baek
,
S.
,
Lee
,
C.
, and
Jeong
,
S.
,
2014
, “
Effect of Flow Maldistribution and Axial Conduction on Compact Microchannel Heat Exchanger
,”
Cryogenics
,
60
, pp.
49
61
.
You do not currently have access to this content.