One-region (1-R) sensitivity computations with the annular-flow model were carried out for countercurrent flow limitation (CCFL) at a sharp-edged lower end in vertical pipes to generalize the prediction method for CCFL there (i.e., predicting effects of diameters and fluid properties on CCFL characteristics). In our previous study, we selected a correlation of interfacial friction coefficients, fi, with a function of average void fraction which gave a good prediction of the trend for air–water CCFL data, and we modified it to get good agreement with steam–water CCFL data under atmospheric pressure conditions, but it failed to predict CCFL reasonably at high pressure conditions. We recently found a Russian report on CCFL data at high pressure conditions, by which we improved the fi correlation using the dimensionless diameter and the viscosity ratio or density ratio of gas and liquid phases to get good agreement with CCFL data at high pressures. The improved fi correlation with the viscosity ratio and the improved fi correlation with the density ratio gave similar computed results, but the number of adjustment functions was one for the density ratio and two for the viscosity ratio (i.e., minimum value of two functions).

References

1.
Wallis
,
G. B.
,
1969
,
One-Dimensional Two-Phase Flow
,
McGraw-Hill
,
New York
, pp.
336
345
.
2.
Richter
,
H. J.
,
Wallis
,
G. B.
,
Carter
,
K. H.
, and
Murphy
,
S. L.
,
1978
, “Deentrainment and Countercurrent Air-Water Flow in a Model PWR Hot-Leg,” U. S. Nuclear Regulatory Commission, Washington, DC, Report No. NRC-0193-9.
3.
Mayinger
,
F.
,
Weiss
,
P.
, and
Wolfert
,
K.
,
1993
, “
Two-Phase Flow Phenomena in Full-Scale Reactor Geometry
,”
Nucl. Eng. Des.
,
145
(
1–2
), pp.
47
61
.
4.
Geffraye
,
G.
,
Bazin
,
P.
,
Pichon
,
P.
, and
Bengaouer
,
A.
,
1995
, “
CCFL in Hot Legs and Steam Generators and Its Prediction With the CATHARE Code
,”
Seventh International Topical Meeting on Nuclear Reactor Thermal Hydraulics
(
NURETH-7
),
Saratoga Springs, NY
,
Sept. 10–15
, pp.
815
826
.https://www.osti.gov/biblio/107026-ccfl-hot-legs-steam-generators-its-prediction-cathare-code
5.
Al Issa
,
S.
, and
Macian
,
R.
,
2014
, “
Experimental Investigation of Countercurrent Flow Limitation (CCFL) in a Large-Diameter Hot-Leg Geometry: A Derailed Description of CCFL Mechanisms, Flow Patterns and High-Quality HSC Imaging of the Interfacial Structure in a 1/3.9 Scale of PWR Geometry
,”
Nucl. Eng. Des.
,
280
, pp.
550
563
.
6.
Minami
,
N.
,
Nishiwaki
,
D.
,
Nariai
,
T.
,
Tomiyama
,
A.
, and
Murase
,
M.
,
2010
, “
Countercurrent Gas-Liquid Flow in a PWR Hot Leg Under Reflux Cooling (I) Air-Water Tests for 1/15- Scale Model of a PWR Hot Leg
,”
J. Nucl. Sci. Technol.
,
47
(
2
), pp.
142
148
.
7.
Murase
,
M.
,
Tomiyama
,
A.
,
Lucas
,
D.
,
Kinoshita
,
I.
,
Utanohara
,
Y.
, and
Yanagi
,
C.
,
2012
, “
Correlation for Countercurrent Flow Limitation in a PWR Hot Leg
,”
J. Nucl. Sci. Technol.
,
49
(
4
), pp.
398
407
.
8.
Takeuchi
,
K.
,
Young
,
M. Y.
, and
Gagnon
,
A. F.
,
1999
, “
Flooding in the Pressurizer Surge Line of AP600 Plant and Analyses of APEX Data
,”
Nucl. Eng. Des.
,
192
(
1
), pp.
45
58
.
9.
Cullum
,
W.
,
Reid
,
J.
, and
Vierow
,
K.
,
2014
, “
Water Inlet Subcooling Effects on Flooding With Steam and Water in a Large Diameter Vertical Tube
,”
Nucl. Eng. Des.
,
273
, pp.
110
118
.
10.
Wang
,
Z. W.
,
Tian
,
W. X.
,
Yu
,
J. T.
,
Zhang
,
D. L.
,
Su
,
G. H.
,
Qiu
,
S. Z.
,
Chen
,
R. H.
, and
Dong
,
B.
,
2015
, “
Experimental Investigation of CCFL in Pressurizer Surge Line With Air-Water
,”
16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics
(
NURETH-16
),
Chicago, IL
,
Aug. 30–Sept. 4
, pp.
8669
8682
.http://glc.ans.org/nureth-16/data/papers/13683.pdf
11.
Futatsugi
,
T.
,
Yanagi
,
C.
,
Murase
,
M.
,
Hosokawa
,
S.
, and
Tomiyama
,
A.
,
2012
, “
Countercurrent Air-Water Flow in a Scale-Down Model of a Pressurizer Surge Line
,”
Sci. Technol. Nucl. Install.
,
2012
, p.
174838
.
12.
Murase
,
M.
,
Kinoshita
,
I.
,
Kusunoki
,
T.
,
Lucas
,
D.
, and
Tomiyama
,
A.
,
2015
, “
Countercurrent Flow Limitation in a Slightly Inclined Pipe With Elbows
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
1
(
4
), p.
041009
.
13.
Murase
,
M.
,
Utanohara
,
Y.
,
Kusunoki
,
T.
,
Yamamoto
,
Y.
,
Lucas
,
D.
, and
Tomiyama
,
A.
,
2017
, “
Prediction of Countercurrent Flow Limitation and Its Uncertainty in Horizontal and Slightly Inclined Pipes
,”
Nucl. Technol.
,
197
(
2
), pp.
140
157
.
14.
Bankoff
,
S. G.
, and
Lee
,
S. C.
,
1983
, “A Critical Review of the Flooding Literature,” U.S. Nuclear Regulatory Commission, Washington, DC, Report No.
NUREG/CR-3060
.https://inis.iaea.org/search/search.aspx?orig_q=RN:18028203
15.
Kusunoki
,
T.
,
Doi
,
T.
,
Fujii
,
Y.
,
Tsuji
,
T.
,
Murase
,
M.
, and
Tomiyama
,
A.
,
2014
, “
Air-Water Tests on Counter-Current Flow Limitation at Lower End of Vertical Pipes Simulating Lower Part of Steam Generator U-Tube
,”
Jpn. J. Multiphase Flow
,
28
(
1
), pp.
62
70
(in Japanese).
16.
Kusunoki
,
T.
,
Murase
,
M.
,
Fujii
,
Y.
,
Nozue
,
T.
,
Hayashi
,
K.
,
Hosokawa
,
S.
, and
Tomiyama
,
A.
,
2015
, “
Effects of Fluid Properties on CCFL Characteristics at a Vertical Pipe Lower End
,”
J. Nucl. Sci. Technol.
,
52
(
6
), pp.
887
896
.
17.
Kusunoki
,
T.
,
Nozue
,
T.
,
Hayashi
,
K.
,
Hosokawa
,
S.
,
Tomiyama
,
A.
, and
Murase
,
M.
,
2016
, “
Condensation Experiments for Counter-Current Flow Limitation in an Inverted U-Tube
,”
J. Nucl. Sci. Technol.
,
53
(
4
), pp.
486
495
.
18.
Doi
,
T.
,
Futatsugi
,
T.
,
Murase
,
M.
,
Hayashi
,
K.
,
Hosokawa
,
S.
, and
Tomiyama
,
A.
,
2012
, “
Countercurrent Flow Limitation at the Junction Between the Surge Line and the Pressurizer of a PWR
,”
Sci. Technol. Nucl. Install.
,
2012
, p.
754724
.
19.
Murase
,
M.
,
Kusunoki
,
T.
,
Yamamoto
,
Y.
,
Mori
,
K.
, and
Tomiyama
,
A.
,
2016
, “
Countercurrent Flow Limitation in Vertical Pipes With the Sharp-Edged Upper End
,”
11th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, Operation and Safety (NUTHOS-11)
,
Gyeongju, Korea
,
Oct. 9–13
, Paper No. N11P0014.
20.
Yamamoto
,
Y.
,
Murase
,
M.
,
Hayashi
,
K.
,
Hosokawa
,
S.
, and
Tomiyama
,
A.
,
2016
, “
Counter-Current Flow Limitation Inside Vertical Pipes
,”
Jpn. J. Multiphase Flow
,
30
(
4
), pp.
392
401
(in Japanese).
21.
Kusunoki
,
T.
,
Yamamoto
,
Y.
,
Murase
,
M.
,
Hayashi
,
K.
,
Hosokawa
,
S.
, and
Tomiyama
,
A.
,
2017
, “
Interfacial Friction Factor for Counter-Current Gas-Liquid Flows in Vertical Pipes
,”
Jpn. J. Multiphase Flow
,
31
(
1
), pp.
37
46
(in Japanese).
22.
Ilyukhin
,
Y. N.
,
Balunov
,
B. F.
,
Smirnov
,
E. L.
, and
Gotovskii
,
M. A.
,
1988
, “
Hydrodynamic Characteristics of Annular Counter Flows in Vertical Channels
,”
Teplofiz. Vys. Temp.
,
26
(
5
), pp.
923
931
(in Russian).
23.
Bankoff
,
S. G.
,
Tankin
,
R. S.
,
Yuen
,
M. C.
, and
Hsieh
,
C. L.
,
1981
, “
Countercurrent Flow of Air/Water and Steam/Water Through a Horizontal Perforated Plate
,”
Int. J. Heat Mass Transfer
,
24
(
8
), pp.
1381
1395
.
24.
Murase
,
M.
,
Kusunoki
,
T.
,
Yamamoto
,
Y.
,
Goda
,
R.
,
Hayashi
,
K.
,
Hosokawa
,
S.
, and
Tomiyama
,
A.
,
2017
, “
Effects of Fluid Properties on Countercurrent Flow Limitation in Vertical Pipes
,”
Jpn. J. Multiphase Flow
,
31
(
2
), pp.
152
161
(in Japanese).
25.
Bharathan
,
D.
,
Wallis
,
G. B.
, and
Richter
,
H. J.
,
1979
, “Air-Water Countercurrent Annular Flow,” Electric Power Research Institute, Palo Alto, CA, Report No. EPRI NP-1165.
26.
Richter
,
H. J.
,
1981
, “
Flooding in Tubes and Annuli
,”
Int. J. Multiphase Flow
,
7
(
6
), pp.
647
658
.
27.
Sudo
,
Y.
,
1994
, “
Limitation of Falling Water in Countercurrent Two-Phase Flow in Vertical Circular Tubes
,”
Trans. JSME
,
60
(
575
), pp.
330
336
(in Japanese).
28.
Bharathan
,
D.
,
Wallis
,
G. B.
, and
Richter
,
H. J.
,
1978
, “Effects of Bottom Orificing on Single- and Multi-Tube Countercurrent Flow Characteristics,” U.S. Nuclear Regulatory Commission, Washington, DC, Report No. NRC-0293-6.
29.
Ohnuki
,
A.
,
Adachi
,
H.
, and
Murao
,
Y.
,
1988
, “
Scale Effects on Countercurrent Gas-Liquid Flow in a Horizontal Tube Connected to an Inclined Riser
,”
Nucl. Eng. Des.
,
107
(
3
), pp.
283
294
.
30.
Bharathan
,
D.
,
Wallis
,
G. B.
, and
Richter
,
H. J.
,
1978
, “Air Water Countercurrent Annular Flow in Vertical Tubes,” Electric Power Research Institute, Palo Alto, CA, Report No. EPRI NP-786.
31.
Zapke
,
A.
, and
Kröger
,
D. G.
,
1996
, “
The Influence of Fluid Properties and Inlet Geometry on Flooding in Vertical and Inclined Tubes
,”
Int. J. Multiphase Flow
,
22
(
3
), pp.
461
472
.
32.
Yonomoto
,
T.
,
Anoda
,
Y.
,
Kukita
,
Y.
, and
Peng
,
Y.
,
1991
, “
CCFL Characteristics of PWR Steam Generator U-Tubes
,”
International Topical Meeting on Safety of Thermal Reactor
,
Portland, OR
,
July 21–25
, pp.
522
529
.
You do not currently have access to this content.