Modernization of reactor instrumentation and control systems is mainly characterized by the transition from analog to digital systems, expressed by replacement of hardware equipment with new software-driven devices. Digital systems may share intelligence capabilities where except for measuring and processing information may also make decisions. State identification systems are systems that process the measurements taken over operational variables and output the state of the reactor. This paper frames itself in the area of control systems applied to state identification of boiling water reactors (BWRs). It presents a methodology that utilizes machine learning tools, and more specifically, a set of relevance vector machines (RVMs) in order to process the incoming signals and identify the state of the BWR in real time. The proposed methodology is comprised of two stages: in the first stage, each RVM identifies the state of the BWR, while the second stage collects the RVM outputs and decides about the real state of the reactor adopting majority voting. The proposed methodology is tested on a set of real-world BWR data taken from the experimental FIX-II facility for recognizing various BWR loss-of-coolant accidents (LOCAs) as well as normal states. Results exhibit the efficiency of the methodology in correctly identifying the correct state of the BWR while promoting real time identification by providing fast responses. However, a strong dependence of identification performance on the form of kernel functions is also concluded.

References

1.
Alamaniotis
,
M.
,
Ikonomopoulos
,
A.
, and
Tsoukalas
,
L. H.
,
2011
, “
On-line Surveillance of Nuclear Power Plant Peripheral Components Using Support Vector Regression
,”
International Symposium on Future Instrumentation and Control for Nuclear Power Plants, Cognitive Systems Engineering in Process Control, and International Symposium on Symbiotic Nuclear Power Systems
(
ICI
), Daejeon, South Korea, Aug. 21–25, p.
1230
.https://inis.iaea.org/search/search.aspx?orig_q=RN:44079341
2.
Isermann
,
R.
,
1984
, “
Process Fault Detection Based on Modeling and Estimation Methods—A Survey
,”
Automatica
,
20
(
4
), pp.
387
404
.
3.
Alamaniotis
,
M.
,
Ikonomopoulos
,
A.
, and
Tsoukalas
,
L. H.
,
2012
, “
Optimal Assembly of Support Vector Regressors With Application to System Monitoring
,”
Int. J. Artif. Intell. Tools
,
21
(
06
), p.
1250034
.
4.
Nabeshima
,
K.
,
Suzudo
,
T.
,
Seker
,
S.
,
Ayaz
,
E.
,
Barutcu
,
B.
,
Türkcan
,
E.
,
Ohno
,
T.
, and
Kudo
,
K.
,
2003
, “
On-Line Neuro-Expert Monitoring System for Borssele Nuclear Power Plant
,”
Prog. Nucl. Energy
,
43
(
1
), pp.
397
404
.
5.
Reifman
,
J.
,
1997
, “
Survey of Artificial Intelligence Methods for Detection and Identification of Component Faults in Nuclear Power Plants
,”
Nucl. Technol.
,
119
(
1
), pp.
76
97
.http://www.ans.org/pubs/journals/nt/a_35396
6.
Ikonomopoulos
,
A.
,
Alamaniotis
,
M.
,
Chatzidakis
,
S.
, and
Tsoukalas
,
L. H.
,
2013
, “
Gaussian Processes for State Identification in Pressurized Water Reactors
,”
Nucl. Technol.
,
182
(
1
), pp.
1
12
.http://www.tandfonline.com/doi/abs/10.13182/NT13-A15821
7.
Alamaniotis
,
M.
,
Chatzidakis
,
S.
, and
Tsoukalas
,
L. H.
,
2015
, “
Data Driven Monitoring of Complex Energy Systems: Gaussian Process Kernel Machines for Fault Identification With Application to Boiling Water Reactors
,”
Intelligent Computing Systems
(Studies in Computational Intelligence),
G.
Tsihrintzis
, and
M.
Virvou
, eds., Vol.
627
,
Springer
,
Berlin
, pp.
177
188
.
8.
Embrechts
,
M. J.
, and
Benedek
,
S.
,
2004
, “
Hybrid Identification of Nuclear Power Plant Transients With Artificial Neural Networks
,”
IEEE Trans. Ind. Electron.
,
51
(
3
), pp.
686
693
.
9.
Baptista Filho
,
B. D.
, and
Oliveira Barroso
,
A. C. D.
,
2003
, “
Identification of IRIS Reactor Transients With Self-Organized Maps
,”
Global 2003: Atoms for Prosperity: Updating Eisenhower's Global Vision for Nuclear Energy
(GENES4/ANP), Kyoto, Japan, Sept. 15–19, Paper No.
1185
.https://www.ipen.br/biblioteca/cd/genes4/2003/papers/1185-final.pdf
10.
Varde
,
P. V.
,
Chowdhury
,
R.
,
Vinod
,
G.
,
Babar
,
A. K.
, and
Kushwaha
,
H. S.
,
2002
, “
Simulation of Pressurised Heavy Water Reactor Data Using Artificial Neural Network for Reactor Status/Transient Identification
,”
Barc Newsletter
,
International Conference on Quality, Reliability and Control
, Oxford, UK, Mar. 21–22, pp.
57
63
.http://www.barc.gov.in/publications/nl/2002/200210-08.pdf
11.
Roverso
,
D.
,
2002
, “
Plant Diagnostics by Transient Classification: The Aladdin Approach
,”
Int. J. Intell. Syst.
,
17
(
8
), pp.
767
790
.
12.
Roverso
,
D.
,
2000
, “
Soft Computing Tools for Transient Classification
,”
Inf. Sci.
,
127
(
3
), pp.
137
156
.
13.
Akkurt
,
H.
, and
Çolak
,
Ü.
,
2002
, “
PWR System Simulation and Parameter Estimation With Neural Networks
,”
Ann. Nucl. Energy
,
29
(
17
), pp.
2087
2103
.
14.
Antonio
,
C. D.
,
Martinez
,
A. S.
, and
Schirru
,
R.
,
2003
, “
A Neural Model for Transient Identification in Dynamic Processes With ‘Don't Know’ Response
,”
Ann. Nucl. Energy
,
30
(
13
), pp.
1365
1381
.
15.
Gottlieb
,
C.
,
Arzhanov
,
V.
,
Gudowski
,
W.
, and
Garis
,
N.
,
2006
, “
Feasibility Study on Transient Identification in Nuclear Power Plants Using Support Vector Machines
,”
Nucl. Technol.
,
155
(
1
), pp.
67
77
.http://www.ans.org/pubs/journals/nt/a_3746
16.
Jiang
,
B. T.
,
Hines
,
J. W.
, and
Zhao
,
F. Y.
,
2016
, “
Application of Fuzzy Weighted Support Vector Regression to Accidents Condition Monitoring of Nuclear Power Plant
,”
ASME
Paper No. ICONE24-60983.
17.
Medeiros
,
J. A. C. C.
, and
Schirru
,
R.
,
2008
, “
Identification of Nuclear Power Plant Transients Using the Particle Swarm Optimization Algorithm
,”
Ann. Nucl. Energy
,
35
(
4
), pp.
576
582
.
18.
Dos Santos Nicolau
,
A.
, and
Schirru
,
R.
,
2014
, “
QDPSO and Minkowski Distance Applied to Transient Diagnosis System
,”
Sixth International Conference on Agents and Artificial Intelligence
(
ICAART
), Angers, France, Mar. 6–8, pp.
611
616
.https://www.researchgate.net/profile/Andressa_Nicolau/publication/292878434_QDPSO_and_minkowski_distance_applied_to_transient_diagnosis_system/links/58330edd08ae102f07366036/QDPSO-and-minkowski-distance-applied-to-transient-diagnosis-system.pdf
19.
Prusty
,
M. R.
,
Chakraborty
,
J.
,
Seetha
,
H.
,
Jayanthi
,
T.
, and
Velusamy
,
K.
,
2014
, “
Fuzzy Logic Based Transient Identification System for Operator Guidance Using Prototype Fast Breeder Reactor Operator Training Simulator
,”
IEEE International Advance Computing Conference
(
IACC
), Gurgaon, India, Feb. 21–22, pp.
1259
1264
.
20.
Guimarães
,
A. C. F.
, and
Lapa
,
C. M. F.
,
2004
, “
Nuclear Transient Phase Ranking Table Using Fuzzy Inference System
,”
Ann. Nucl. Energy
,
31
(
15
), pp.
1803
1812
.
21.
Wang
,
X.
,
Tsoukalas
,
L. H.
,
Wei
,
T. Y.
, and
Reifman
,
J.
,
2001
, “
An Innovative Fuzzy-Logic-Based Methodology for Trend Identification
,”
Nucl. Technol.
,
135
(
1
), pp.
67
84
.http://www.tandfonline.com/doi/abs/10.13182/NT01-A3206
22.
Da Costa
,
R. G.
,
de Abreu Mol
,
A. C.
,
de Carvalho
,
P. V. R.
, and
Lapa
,
C. M. F.
,
2011
, “
An Efficient Neuro-Fuzzy Approach to Nuclear Power Plant Transient Identification
,”
Ann. Nucl. Energy
,
38
(
6
), pp.
1418
1426
.
23.
Ikonomopoulos
,
A.
,
Tsoukalas
,
L. H.
, and
Uhrig
,
R. E.
,
1993
, “
Integration of Neural Networks With Fuzzy Reasoning for Measuring Operational Parameters in a Nuclear Reactor
,”
Nucl. Technol.
,
104
(
1
), pp.
1
12
.http://www.tandfonline.com/doi/abs/10.13182/NT93-A34866
24.
Alamaniotis
,
M.
,
Jin
,
X.
, and
Ray
,
A.
,
2015
, “
On-Line Condition Monitoring of Boiling Water Reactors Using Symbolic Dynamic Analysis
,”
Nineth International Topical Meeting on Nuclear Plant Instrumentation
, Control, and Human Machine Interface Technologies, Charlotte, NC, Feb. 22–26, pp.
722
732
.
25.
Jin
,
X.
,
Guo
,
Y.
,
Sarkar
,
S.
,
Ray
,
A.
, and
Edwards
,
R. M.
,
2011
, “
Anomaly Detection in Nuclear Power Plants Via Symbolic Dynamic Filtering
,”
IEEE Trans. Nucl. Sci.
,
58
(
1
), pp.
277
288
.
26.
Dos Santos Nicolau
,
A.
,
Schirru
,
R.
, and
de Moura Meneses
,
A. A.
,
2011
, “
Quantum Evolutionary Algorithm Applied to Transient Identification of a Nuclear Power Plant
,”
Prog. Nucl. Energy
,
53
(
1
), pp.
86
91
.
27.
Sun
,
Y.
,
Ping
,
M.
, and
Li
,
F.
,
2015
, “
MSET-Based Abnormal Condition Monitoring Technology of Nuclear Power Plant
,”
Nineth International Topical Meeting on Nuclear Plant Instrumentation
, Control, and Human Machine Interface Technologies, Charlotte, NC, Feb. 22–26, pp.
18
23
.
28.
Ikonomopoulos
,
A.
, and
Endou
,
A.
,
1998
, “
Wavelet Decomposition and Radial Basis Function Networks for System Monitoring
,”
IEEE Trans. Nucl. Sci.
,
45
(
5
), pp.
2293
2301
.
29.
Antonopoulos-Domis
,
M.
, and
Tambouratzis
,
T.
,
1998
, “
System Identification During a Transient Via Wavelet Multiresolution Analysis Followed by Spectral Techniques
,”
Ann. Nucl. Energy
,
25
(
7
), pp.
465
480
.
30.
Ciftcioglu
,
O.
, and
Turkcan
,
E.
,
1996
, “
Transient Detection by Wavelet Transform in Plant Monitoring
,” Symposium on Nuclear Reactor Surveillance and Diagnostics (
SMORN VII
), Avignon, France, June 19–13, Vol.
1
, pp.
185
193
.https://inis.iaea.org/search/search.aspx?orig_q=RN:29017197
31.
Shen
,
B.
,
Williams
,
J. G.
, and
Jouse
,
W. C.
,
1994
, “
Wavelet Transform of Reactor Power Transients
,”
IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference
(
NSS/MIC
), Norfolk, VA, Oct. 30–Nov. 5, Vol.
3
, pp.
1041
1043
.
32.
Chang
,
Y.
,
Huang
,
X.
,
Hao
,
Y.
, and
Li
,
C. W.
,
2013
, “
Linear Representation and Sparse Solution for Transient Identification in Nuclear Power Plants
,”
IEEE Trans. Nucl. Sci.
,
60
(
1
), pp.
319
327
.
33.
Mol
,
A. C.
,
Almeida
,
J. C.
,
Pereira
,
C. M.
,
Marins
,
E. R.
, and
Lapa
,
C. M. F.
,
2006
, “
Neural and Genetic-Based Approaches to Nuclear Transient Identification Including ‘Don't Know' Response
,”
Prog. Nucl. Energy
,
48
(
3
), pp.
268
282
.
34.
Kwon
,
K. C.
, and
Kim
,
J. H.
,
1999
, “
Accident Identification in Nuclear Power Plants Using Hidden Markov Models
,”
Eng. Appl. Artif. Intell.
,
12
(
4
), pp.
491
501
.
35.
Ikonomopoulos
,
A.
,
Uhrig
,
R. E.
, and
Tsoukalas
,
L. H.
,
1991
, “
A Hybrid Neural Network-Fuzzy Logic Approach to Nuclear Power Plant Transient Identification
,”
International Conference on Frontiers in Innovative Computing for the Nuclear Industry
(
AI-91
), Jackson, WY, Sept. 15–18, pp.
217
226
.http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/24/054/24054612.pdf
36.
Cheon
,
S. W.
, and
Chang
,
S. H.
,
1993
, “
Application of Neural Networks to a Connectionist Expert System for Transient Identification in Nuclear Power Plants
,”
Nucl. Technol.
,
102
(
2
), pp.
177
191
.http://www.tandfonline.com/doi/abs/10.13182/NT93-A34815
37.
Hsiao
,
T. Y.
,
Lin
,
C.
, and
Yuann
,
Y. R.
,
2010
, “
Identification of Initiating Events for Pressurized Water Reactor Accidents
,”
Ann. Nucl. Energy
,
37
(
11
), pp.
1502
1512
.
38.
Lin
,
C.
, and
Chang
,
H. J.
,
2011
, “
Identification of Pressurized Water Reactor Transient Using Template Matching
,”
Ann. Nucl. Energy
,
38
(
7
), pp.
1662
1666
.
39.
Galbally
,
J.
, and
Galbally
,
D.
,
2015
, “
A Pattern Recognition Approach Based on DTW for Automatic Transient Identification in Nuclear Power Plants
,”
Ann. Nucl. Energy
,
81
, pp.
287
300
.
40.
Ikonomopoulos
,
A.
,
Varvayanni
,
M.
, and
Catsaros
,
N.
,
2015
, “
Instrumentation and Control Implementations in Research Reactors: A Review
,”
24th International Conference Nuclear Energy for New Europe
(
NENE
), Portorož, Slovenia, Sept. 14–17, p.
310
.http://www.djs.si/proc/nene2015/pdf/NENE2015_310.pdf
41.
Moshkbar-Bakhshayesh
,
K.
, and
Ghofrani
,
M. B.
,
2013
, “
Transient Identification in Nuclear Power Plants: A Review
,”
Prog. Nucl. Energy
,
67
, pp.
23
32
.
42.
Bishop
,
C. M.
,
2006
,
Pattern Recognition and Machine Learning
,
Springer
,
New York
.
43.
Yang
,
B.
,
Zhang
,
Z.
, and
Sun
,
Z.
,
2007
, “
Robust Relevance Vector Regression With Trimmed Likelihood Function
,”
IEEE Signal Process. Lett.
,
14
(
10
), pp.
746
749
.
44.
Tipping
,
M. E.
,
2001
, “
Sparse Bayesian Learning and the Relevance Vector Machine
,”
J. Mach. Learn. Res.
,
1
, pp.
211
244
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.568.7983&rep=rep1&type=pdf
45.
Alamaniotis
,
M.
, and
Cappelli
,
M.
,
2016
, “
Real-Time State Identification of Boiling Water Reactors Using Relevance Vector Machines
,”
ASME
Paper No. ICONE24-60048.
46.
Alamaniotis
,
M.
,
Bargiotas
,
D.
,
Bourbakis
,
N.
, and
Tsoukalas
,
L. H.
,
2015
, “
Genetic Optimal Regression of Relevance Vector Machines for Electricity Price Forecasting in Smart Grids
,”
IEEE Trans. Smart Grid
,
6
(
6
), pp.
2997
3005
.
47.
Tsoukalas
,
L. H.
, and
Uhrig
,
R. E.
,
1997
,
Fuzzy and Neural Approaches in Engineering
,
Wiley-Interscience
,
New York
.
48.
Nilsson
,
L.
, and
Gustafsson
,
P. A.
,
1983
, “
FIX-II: LOCA Blowdown and Pump Trip Heat Experiments
,” Swedish Nuclear Power Plant Inspectorate, Stockholm, Sweden, Report No. STUDSVIK/E4-79-22.
49.
Alamaniotis
,
M.
,
Ikonomopoulos
,
A.
, and
Tsoukalas
,
L. H.
,
2012
, “
Probabilistic Kernel Approach to Online Monitoring of Nuclear Power Plants
,”
Nucl. Technol.
,
177
(
1
), pp.
132
144
.http://www.tandfonline.com/doi/abs/10.13182/NT12-A13333
50.
Alamaniotis
,
M.
,
Ikonomopoulos
,
A.
, and
Tsoukalas
,
L. H.
,
2010
, “
Gaussian Processes for Failure Prediction of Slow Degradation Components in Nuclear Power Plants
,”
European Safety and Reliability Conference
, Prague, Czech Republic, Sept. 7–10, pp.
2096
2102
.
You do not currently have access to this content.