During normal operation in Canada deuterium uranium (CANDU®) reactors, the stress corrosion cracking (SCC) of fuel sheathing is mitigated effectively, in part, using a thin graphite-based coating known as CANDU lubricant (CANLUB). Mechanisms typically proposed for the demonstrated SCC mitigation offered by CANLUB include lubrication and/or chemical interactions. An additional possibility, that was recently suggested, involves the sequestering of iodine through its interaction with alkali metal and/or alkaline earth metal impurities in the CANLUB coating. This possibility is supported by the systematic analysis and testing in this paper, wherein three prevalent impurities (Na, Ca, and Mg) found in CANLUB were incorporated into SCC slotted ring experiments as metal oxides. When the amount of metal oxide (Na2O, CaO, or MgO) matched or exceeded the amount of iodine (6 mmol = 16 mg/cm3), Na2O and CaO protected the rings from corrosion whereas MgO enhanced their corrosion. When Zircaloy-4 sheathing is subjected to mechanical stress, high temperature, and high concentrations of iodine vapor, it is better protected by siloxane coatings than by graphite-CANLUB coatings. Consequently, since metal impurities (Na, Ca, and Mg) are found more abundantly in siloxane coatings than in graphite-CANLUB coatings, Zircaloy-4 slotted rings were coated with graphite-CANLUB containing Na, Ca, and/or Mg at those more abundant concentrations. Since these concentrations remain below 6 mmol, SCC test results suggest that the siloxane's superior adhesion is an essential first step in preventing corrosion induced by 6 mmol of iodine.

References

References
1.
Une
,
K.
,
1979
, “
Influences of Cesium and Cesium Oxide on Iodine Stress Corrosion Cracking of Zircaloy-2 in Out-of-Pile and In-Pile Conditions
,”
J. Nucl. Mater.
,
87
(
1
), pp.
207
210
.
2.
Sidky
,
P. S.
,
1998
, “
Iodine Stress Corrosion Cracking of Zircaloy Reactor Cladding: Iodine Chemistry (A Review)
,”
J. Nucl. Mater.
,
256
(
1
), pp.
1
17
.
3.
Lewis
,
B. J.
,
Thompson
,
W. T.
,
Kleczek
,
M. R.
,
Shaheen
,
K.
,
Juhas
,
M.
, and
Iglesias
,
F. C.
,
2011
, “
Modelling of Iodine-Induced Stress Corrosion Cracking in CANDU Fuel
,”
J. Nucl. Mater.
,
408
(
3
), pp.
209
223
.
4.
Garisto
,
F.
,
1982
, “
Thermodynamics of Iodine, Cesium and Tellurium in the Primary Heat-Transport System Under Accident Conditions
,” Atomic Energy of Canada, Pinawa, Canada, Report No. AECL-7782.
5.
Cubicciotti
,
D.
, and
Davies
,
J. H.
,
1976
, “
Release of Iodine From Iodide Salts by Gamma-Radiolysis
,”
Nucl. Sci. Eng.
,
60
(
3
), pp.
314
319
.
6.
Une
,
K.
,
1977
, “
Stress Corrosion Cracking of Zircaloy-2 Cladding in Iodine Vapor
,”
J. Nucl. Sci. Technol.
,
14
(
6
), pp.
443
451
.
7.
Metzler
,
J.
,
Ferrier
,
G. A.
,
Farahani
,
M.
,
Chan
,
P. K.
, and
Corcoran
,
E. C.
,
2015
, “
Influence of Alkali Metal Oxides and Alkaline Earth Metal Oxides on the Mitigation of Stress Corrosion Cracking in CANDU Fuel Sheathing
,”
35th Annual CNS Conference
, May 31–June 3, Canadian Nuclear Society, St. John, Canada, ▪.
8.
Ferrier
,
G. A.
,
Farahani
,
M.
,
Metzler
,
J.
,
Chan
,
P. K.
, and
Corcoran
,
E. C.
,
2015
, “
Mitigating the Stress Corrosion Cracking of Zircaloy-4 Fuel Sheathing: Siloxane Coatings Revisited
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
2
(
2
), p.
021004
.
9.
Christensen
,
M.
,
Angeliu
,
T. M.
,
Ballard
,
J. D.
,
Vollmer
,
J.
,
Najafabadi
,
R.
, and
Wimmer
,
E.
,
2010
, “
Effect of Impurity and Alloying Elements on Zr Grain Boundary Strength From First-Principles Computations
,”
J. Nucl. Mater.
,
404
(
2
), pp.
121
127
.
10.
Bale
,
C. W.
,
Chartrand
,
P.
,
Degterov
,
S. A.
,
Eriksson
,
G.
,
Hack
,
K.
,
Ben Mahfoud
,
R.
,
Melancon
,
J.
,
Pelton
,
A. D.
, and
Petersen
,
S.
,
2002
, “
FactSage Thermochemical Software and Databases
,”
CALPHAD
,
26
(
2
), pp.
189
228
.
11.
Corcoran
,
E. C.
,
2009
, “
Thermodynamic Modelling of Advanced CANDU Reactor Fuel
,” Ph.D. thesis, Royal Military College of Canada, Kingston, ON, Canada.
12.
Nielsen
,
R. H.
,
Schlewitz
,
J. H.
, and
Nielsen
,
H.
,
2013
, “
Zirconium and Zirconium Compounds
,”
Kirk-Othmer Encyclopedia of Chemical Technology
, ▪, ▪, pp.
1
46
.
13.
Jacob
,
K. T.
, and
Waseda
,
Y.
,
1995
, “
Potentiometric Determination of the Gibbs Energies of Formation of SrZrO3 and BaZrO3
,”
Metall. Mater. Trans. B
,
26
(
4
), pp.
775
781
.
14.
Cox
,
B.
,
1973
, “
The Effect of Surface Films on the Initiation of Stress Corrosion Cracking of Zircaloy-2
,” Atomic Energy of Canada, Chalk River, Canada, Report No. AECL-4589.
15.
van Arkel
,
A. E.
, and
de Boer
,
J. H.
,
1925
, “
Darstellung von Reinem Titanium-, Zirkonium-, Hafnium- Und Thoriummetall
,”
Z. Anorg. Allg. Chem.
,
148
(
1
), pp.
345
350
.
16.
Wood
,
J. C.
,
1972
, “
Factors Affecting Stress Corrosion Cracking of Zircaloy in Iodine Vapour
,”
J. Nucl. Mater.
,
45
(
2
), pp.
105
122
.
17.
Cox
,
B.
,
1990
, “
Pellet-Clad Interaction (PCI) Failures of Zirconium Alloy Fuel Cladding—A Review
,”
J. Nucl. Mater.
,
172
(
3
), pp.
249
292
.
18.
Wood
,
J. C.
,
1974
, “
Interactions Between Stressed Zirconium Alloys and Iodine at 300 °C
,”
Nucl. Technol.
,
23
(
1
), pp.
63
79
.
19.
Wood
,
J. C.
,
Hardy
,
D. G.
, and
Bain
,
A. S.
,
1979
, “
Improved CANDU Fuel Performance—A Summary of Previous AECL Publications
,”
Specialists' Meeting on Power Ramping and Power Cycling of Water Reactor Fuel and Its Significance to Fuel Behaviour
, Arles, France, May 14–18, International Atomic Energy Agency, ▪, pp.
79
83
.
20.
Hastings
,
I. J.
,
Tayal
,
M.
, and
Manzer
,
A. M.
,
1990
, “
CANDU Fuel Performance in Load-Following Operation
,” Atomic Energy of Canada, Chalk River, Canada, Report No. AECL-9812.
21.
Kleczek
,
M. R.
,
2010
, “
Thermodynamic and Kinetic Modelling of Iodine Induced Stress Corrosion Cracking in Nuclear Fuel Sheathing
,” M.A.Sc. thesis, Royal Military College of Canada, Kingston, ON, Canada.
22.
Quastel
,
A. D.
,
Corcoran
,
E. C.
, and
Lewis
,
B. J.
,
2013
, “
The Effect of Oxidized UO2 on Iodine Induced Stress Corrosion Cracking of Fuel Sheathing
,”
12th International Conference on CANDU Fuel
, Sept. 15–18, Canadian Nuclear Society, Kingston, Canada, ▪.
23.
Wilsmore
,
N. T. M.
,
1891
, “
Note on Magnesium Iodide
,”
Report of the Third Meeting of the Australasian Association for the Advancement of Science
, Christchurch, New Zealand, p.
116
.
24.
Ropp
,
R. C.
,
2013
, “
Halide Compounds of Magnesium
,”
Encyclopedia of the Alkaline Earth Compounds
, ▪, ▪, pp.
41
49
.
25.
DeLuca
,
L. S.
,
Sumsion
,
H. T.
, and
Van Horn
,
D. D.
,
1957
, “
Magnesium-Zirconium Diffusion Studies
,” Knolls Atomic Power Laboratory, Schenectady, NY, Report No. KAPL-1746.
26.
Frye
,
J. H.
,
Manly
,
W. D.
, and
Cunningham
,
J. E.
,
1957
, “
Metallurgy Division Annual Progress Report for Period Ending October 10, 1957
,” Oak Ridge National Laboratory, Oak Ridge, TN, Report No. ORNL-2422.
27.
Messler
,
R. W.
,
2004
, “
Brazing the Reactive Metals and Alloys
,”
Joining of Materials and Structures: From Pragmatic Process to Enabling Technology
,
Elsevier Butterworth-Heinemann
,
Burlington, MA
, pp.
554
556
.
28.
Jones
,
H. C.
,
1906
, “
Chapter 30—Calcium, Strontium, and Barium
,”
Principles of Organic Chemistry
,
Macmillan
,
New York
, p.
365
.
29.
Prudil
,
A.
,
2013
, “
FAST: A Fuel and Sheath Modeling Tool for CANDU Reactor Fuel
,” Ph.D. thesis, Royal Military College of Canada, Kingston, ON, Canada.
30.
Francis
,
M. F.
, and
Taylor
,
C. D.
,
2013
, “
First-Principles Insights Into the Structure of the Incipient Magnesium Oxide and Its Instability to Decomposition: Oxygen Chemisorption to Mg(0001) and Thermodynamic Stability
,”
Phys. Rev. B
,
87
(
7
), p.
075450
.
31.
Rosinger
,
H. E.
, and
Northwood
,
D. O.
,
1979
, “
The Elastic Properties of Zirconium Alloy Fuel Cladding and Pressure Tubing Materials
,”
J. Nucl. Mater.
,
79
(
1
), pp.
170
179
.
32.
Cubicciotti
,
D.
,
Howard
,
S. M.
, and
Jones
,
R. L.
,
1978
, “
The Formation of Iodine-Induced Stress Corrosion Cracks in Zircaloys
,”
J. Nucl. Mater.
,
78
(
1
), pp.
2
16
.
33.
Hocking
,
W. H.
,
Behnke
,
R.
,
Duclos
,
A. M.
,
Gerwing
,
A. F.
, and
Chan
,
P. K.
,
1997
, “
Investigation of the CANLUB/Sheath Interface in CANDU Fuel at Extended Burnup by XPS and SEM/WDX
,”
Fifth International Conference on CANDU Fuel, Canadian Nuclear Society
, Toronto, Canada, pp.
376
392
.
You do not currently have access to this content.