Large sets of fluid temperature histories and a recently proposed thermal fatigue assessment procedure are employed in this paper to deliver more accurate statistics of predicted lives of pipes and their uncertainties under turbulent fluid mixing circumstances. The wide variety of synthetic fluid temperatures, generated with an improved spectral method, results in a set of estimated distributions of fatigue lives through linear one-dimensional (1D) heat diffusion, thermal stress estimates, and fatigue assessment codified rules. The results of the fatigue analysis indicate that, in order to avoid the inherent uncertainties due to comparatively short fluid temperature histories to the estimated fatigue lives, a conservative safe design against thermal fatigue could be attempted with the lower bounds of the predicted life distributions, such as the 5% probability life (5% of samples fail). The impact of the convection heat transfer coefficient on the predictions is also studied in a sensitivity analysis. This represents a detailed attempt to correlate the uncertainties in the physical fluid mixing conditions and heat transfer to the estimated fatigue life using spectral methods.

References

References
1.
Chapuliot
,
S.
,
Gourdin
,
C.
,
Payen
,
T.
,
Magnaud
,
J. P.
, and
Monavon
,
A.
,
2005
, “
Hydro-Thermal-Mechanical Analysis of Thermal Fatigue in a Mixing Tee
,”
Nucl. Eng. Des.
,
235
(
5
), pp.
575
596
.
2.
NEA/CSNI
,
2005
, “
Thermal Cycling in LWR Components in OECD-NEA Member Countries
,” Nuclear Energy Agency (NEA) Committee on the Safety of Nuclear Installations (CSNI), Paris, France, Report No.
NEA/CSNI/R(2005)8
.https://www.oecd-nea.org/nsd/docs/2005/csni-r2005-8.pdf
3.
Dahlberg
,
M.
,
Nilsson
,
K. F.
,
Taylor
,
N.
,
Faidy
,
C.
,
Wilke
,
U.
,
Chapuliot
,
S.
,
Kalkhof
,
D.
, and
Bretherton
,
I.
,
2007
, “
Development of a European Procedure for Assessment of High Cycle Thermal Fatigue in Light Water Reactors: Final Report of the NESC-Thermal Fatigue Project
,” J. R. C. European Commission, Institute for Energy, Petten, The Netherlands.
4.
Paffumi
,
E.
,
Radu
,
V.
, and
Nilsson
,
K. F.
,
2013
, “
Thermal Fatigue Striping Damage Assessment From Simple Screening Criterion to Spectrum Loading Approach
,”
Int. J. Fatigue
,
53
, pp.
92
104
.
5.
Hannink
,
M. H. C.
, and
Timperi
,
A.
,
2011
, “
Simplified Methods to Assess Thermal Fatigue Due to Turbulent Mixing
,”
19th International Conference on Nuclear Engineering
(
ICONE19
), Osaka, Japan, Oct. 24–25, Paper No. ICONE19-43297.https://inis.iaea.org/search/searchsinglerecord.aspx?recordsFor=SingleRecord&RN=44076739
6.
Shibamoto
,
H.
,
Kasahara
,
N.
,
Morishita
,
M.
,
Inoue
,
K.
, and
Jimbo
,
M.
,
2008
, “
Research and Developments of Guidelines for Thermal Load Modeling
,”
Nucl. Eng. Des.
,
238
(
2
), pp.
299
309
.
7.
Clayton
,
A. M.
, and
Irvine
,
N. M.
,
1987
, “
Structural Assessment Techniques for Thermal Striping
,”
ASME J. Pressure Vessel Technol.
,
109
(
3
), pp.
305
309
.
8.
Miyoshi
,
K.
,
Kamaya
,
M.
,
Utanohara
,
Y.
, and
Nakamura
,
A.
,
2016
, “
An Investigation of Thermal Stress Characteristics by Wall Temperature Measurements at a Mixing Tee
,”
Nucl. Eng. Des.
,
298
, pp.
109
120
.
9.
Beaufils
,
R.
, and
Courtin
,
S.
,
2011
, “
Analysis of the FATHER Experiment With an Engineering Method Devoted to High Cycle Thermal Fatigue
,”
ASME
Paper No. PVP2011-57630.
10.
Kamaya
,
M.
, and
Nakamura
,
A.
,
2011
, “
Thermal Stress Analysis for Fatigue Damage Evaluation at a Mixing Tee
,”
Nucl. Eng. Des.
,
241
(
8
), pp.
2674
2687
.
11.
Timperi
,
A.
,
2014
, “
Conjugate Heat Transfer LES of Thermal Mixing in a T-Junction
,”
Nucl. Eng. Des.
,
273
, pp.
483
496
.
12.
Costa Garrido
,
O.
,
El Shawish
,
S.
, and
Cizelj
,
L.
,
2016
, “
Uncertainties in the Thermal Fatigue Assessment of Pipes Under Turbulent Fluid Mixing Using an Improved Spectral Loading Approach
,”
Int. J. Fatigue
,
82
(
Pt. 3
), pp.
550
560
.
13.
Costa Garrido
,
O.
,
El Shawish
,
S.
, and
Cizelj
,
L.
,
2014
, “
A Novel Approach to Generate Random Surface Thermal Loads in Piping
,”
Nucl. Eng. Des.
,
273
, pp.
98
109
.
14.
Costa Garrido
,
O.
, and
Cizelj
,
L.
,
2016
, “
Probabilistic Prediction of Fatigue Life of Pipes Under Turbulent Fluid Mixing
,”
ASME
Paper No. ICONE24-60194.
15.
Kasahara
,
N.
,
Takasho
,
H.
, and
Yacumpai
,
A.
,
2002
, “
Structural Response Function Approach for Evaluation of Thermal Striping Phenomena
,”
Nucl. Eng. Des.
,
212
(1–3), pp.
281
292
.
16.
Shinozuka
,
M.
, and
Deodatis
,
G.
,
1991
, “
Simulation of Stochastic Processes by Spectral Representation
,”
ASME Appl. Mech. Rev.
,
44
(
4
), pp.
191
204
.
17.
Hinze
,
J. O.
,
1975
, “
The Spectral Distribution of a Scalar Quantity
,”
Turbulence
,
2nd ed.
,
McGraw-Hill
,
New York
, pp.
283
300
.
18.
Press
,
W. H.
,
Teukolsky
,
S. A.
,
Vetterling
,
W. T.
, and
Flannery
,
B. P.
,
1997
,
Numerical Recipes in C: The Art of Scientific Computing
,
2nd ed.
,
Cambridge University Press
,
Cambridge, UK
.
19.
Hu
,
L.-W.
, and
Kazimi
,
M. S.
,
2006
, “
LES Benchmark Study of High Cycle Temperature Fluctuations Caused by Thermal Striping in a Mixing Tee
,”
Int. J. Heat Fluid Flow
,
27
(
1
), pp.
54
64
.
20.
Westin
,
J.
,
Veber
,
P.
,
Andersson
,
L.
,
Mannetje
,
C. T.
,
Andersson
,
U.
,
Eriksson
,
J.
,
Henriksson
,
M. E.
,
Alavyoon
,
F.
, and
Andersson
,
C.
,
2008
, “
High-Cycle Thermal Fatigue in Mixing Tees: Large-Eddy Simulations Compared to a New Validation Experiment
,”
ASME
Paper No. ICONE16-48731.
21.
Costa Garrido
,
O.
,
El Shawish
,
S.
, and
Cizelj
,
L.
,
2015
, “
Stress Assessment in Piping Under Synthetic Thermal Loads Emulating Turbulent Fluid Mixing
,”
Nucl. Eng. Des.
,
283
, pp.
114
130
.
22.
Costa Garrido
,
O.
,
Cizelj
,
L.
, and
El Shawish
,
S.
,
2013
, “
The Role of the Axial Heat Fluxes in the Thermal Fatigue Assessment of Piping
,”
Nucl. Eng. Des.
,
261
, pp.
382
393
.
23.
Noda
,
N.
,
Hetnarski
,
R. B.
, and
Tanigawa
,
Y.
,
2003
,
Thermal Stresses
,
2nd ed.
,
Taylor & Francis
,
New York
.
24.
ASME
,
1989
, “
Boiler and Pressure Vessel Code, Section III, Rules for Construction of Nuclear Power Plant Components
,” American Society of Mechanical Engineers, New York.
25.
Chopra
,
O. K.
, and
Shack
,
W. J.
,
2007
, “
Effect of LWR Coolant Environments on the Fatigue Life of Reactor Materials
,” Argonne National Laboratory, Lemont, IL, Report No.
NUREG/CR-6909
.https://www.nrc.gov/docs/ML0706/ML070660620.pdf
26.
Nieslony
,
A.
, 2003, “
Rainflow Counting Algorithm
,”
MATLAB Central
, Natick, MA.https://in.mathworks.com/company/aboutus/contact_us.html?s_tid=gn_cntus
27.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
1996
,
Fundamentals of Heat and Mass Transfer
,
4th ed.
,
Wiley
,
Hoboken, NJ
.
28.
Kimura
,
N.
,
Ono
,
A.
,
Miyakoshi
,
H.
, and
Kamide
,
H.
,
2009
, “
Experimental Study on High Cycle Thermal Fatigue in T-Junction—Effect of Local Flow Velocity on Transfer of Temperature Fluctuation From Fluid to Structure
,”
13th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-13)
, Kanazawa, Japan, Sept. 27–Oct. 2, Paper No. N13P1169.
29.
Hannink
,
M. H. C.
, and
Blom
,
F. J.
,
2011
, “
Numerical Methods for the Prediction of Thermal Fatigue Due to Turbulent Mixing
,”
Nucl. Eng. Des.
,
241
(
3
), pp.
681
687
.
You do not currently have access to this content.