This study investigates heat transfer characters of a volumetrically heated melt pool in LWR lower plenum. Experimental restrictions on prediction reliability are discussed. These restrictions include cooling boundary conditions, vessel geometries, and simulant melt selection on general and localized heat transfer. A survey of existing heat transfer correlations derived from individual experimental definitions is presented. The inconsistency in parameter definitions in Nu–Ra correlations is discussed. Furthermore, the discrepancy of upward Nu depending on the existence of crust is stressed. Several serials of experiments with different combinations boundary condition of external cooling and top cooling were performed in LIVE3D and LIVE2D facilities. The experiments were conducted with simulants with and without crust formation. The influences of cooling boundary conditions, the vessel geometry, and the simulant material on overall heat transfer as well as on heat flux distribution are analyzed. This paper provides own explanations about the discrepancies among the exiting heat transfer correlations and recommends the most suitable descriptions of melt pool heat transfer under different accident management strategies.

References

References
1.
Theofanous
,
T.
,
Maguire
,
M.
,
Angelini
,
S.
, and
Salmassi
,
T.
,
1997
, “
The First Results From the ACOPO Experiment
,”
Nucl. Eng. Des.
,
169
(1–3), pp.
49
57
.
2.
Camila
,
V.
,
Gabriel
,
R.
, and
Jian
,
S.
,
2010
, “
Computational Simulation of Natural Convection of a Molten Core in Lower Head of a PWR Pressure Vessel
,”
13th Brazilian Congress of Thermal Sciences of Engineering
,
Uberlandia
,
Brazil
, Dec. 5–10.
3.
Strizhov
,
V.
,
2003
, “
Molten Pool Heat Transfer
,” EUROCOURSE 2003 Corium: Severe Accident R&D and Nuclear Power Plant Safety, Aix en Provence,
France
, Jan. 27–31.
4.
Oertel
,
H.
, and
Delfs
,
J.
,
1996
,
Strömungsmechanische Instabilitäten
,
U.
Karlsruhe
, ed.,
Springer Verlage
,
Berlin
, pp.
44
45
.
5.
Asfia
,
F.
, and
Dhir
,
V.
,
1996
, “
An Experimental Study of Natural Convection in a Volumetrically Heated Spherical Pool Bounded on Top With a Rigid Wall
,”
Nucl. Eng. Des.
,
163
(
3
), pp.
333
348
.
6.
Dinh
,
T.
,
Nourgaliev
,
R.
, and
Sehgal
,
B.
,
1997
, “
On Heat Transfer Characteristics of Real and Simulant Melt Pool Experiments
,”
Nucl. Eng. Des.
,
169
(1–3), pp.
151
164
.
7.
Bernaz
,
L.
,
Bonnet
,
J.
,
Spindler
,
B.
, and
Villermaux
,
C.
,
1998
, “
Thermohydraulic Phenomea in Corium Pools: Numerical Simulation With TOLBIAC and Experimental Validation With BALI
,”
Workshop on In-Vessel Core Debris Retention and Coolability
, Garching, Germany, Mar. 3–6.
8.
Bonnet
,
J.
, and
Seiler
,
J.
,
1999
, “
Thermal Hydraulic Phenomena in Corim Pools: The BALI Experiment
,”
7th International Conference on Nuclear Engineering (ICONE 7)
, Tokyo, Japan, Apr. 19–23.
9.
Helle
,
M.
,
Kymäläinen
,
O.
, and
Tumosito
,
H.
,
1998
, “
Experimental Data on Heat Flux Distribution From a Volumetrically Heated Pool With Frozen Boundaries
,”
Workshop on In-Vessel Core Debris Retention and Coolability
,
Garching
,
Germany
.
10.
Kolb
,
G.
,
Theerthan
,
S.
, and
Sehgal
,
B.
,
2000
, “
Experiments on In-Vessel Melt Pool Formation and Convection With NaNO3-KNO3 Salt Mixture as Melt Simulant
,” 8th International Conference on Nuclear Engineering (ICONE 8), Baltimore, MD, Apr. 2–6.
11.
Jahn
,
M.
, and
Reinecke
,
M.
,
1974
, “
Free Convection Heat Transfer With Internal Heat Sources Calculations and Measurements
,”
5th International Heat Transfer Conference
, Tokyo, Japan, Sept. 1–6, Vol.
3
, p.
74
.
12.
Mayinger
,
F.
,
Jahn
,
M.
,
Reineke
,
H.
, and
Steinberner
,
U.
,
1975
, “
Untersuchung thermohydraulischer Vorgänge sowie Wärmeaustausch in der Kernschmelze
,” Bundesministerium für Forschung und Technologie, Bonn, Germany.
13.
Steinberner
,
U.
, and
Reinecke
,
H.
,
1978
, “
Turbulent Bouyancy Convection Heat Transfer With Internal Heat Sources
,”
6th International Heat Transfer Conference
(IHTC-6)
,
Toronto
, ON, Canada, Aug. 7–11, pp. 305–310.
14.
Kymäläinen
,
O.
,
Tuomisto
,
H.
,
Hongisto
,
O.
, and
Theofanous
,
T.
,
1994
, “
Heat Flux Distribution From a Volumetrically Heated Pool With High Rayleigh Number
,”
Nucl. Eng. Des.
,
149
(1–3), pp.
401
408
.
15.
Helle
,
M.
,
Kymäläinen
,
O.
, and
Tuomisto
,
H.
,
1999
, “
Experimental COPO II Dara on Nature Convection Homogenous and Stratified Pools
,” 9th International Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-9), San Francisco, CA, Oct. 3–8.
16.
Asmolov
,
V.
,
Abalin
,
S.
,
Surenkov
,
A.
,
Gnidoi
,
I.
, and
Strizhov
,
V.
,
1998
, “
Results of Salt Experiments Performed During Phase I of RASPLAV Project, RP-TR-33
,” Russian Research Centre, Kurchatov Institute, Moscow, Russia.
17.
Gaus-Liu
,
X.
, and
Miassoedov
,
A.
,
2013
, “
LIVE Experimental Results of Melt Pool Behaviour in the PWR Lower Head With Insulated Upper Lid and External Cooling
,”
ASME
Paper No. ICONE21-15204.
18.
Zhang
,
Y.
,
Zhang
,
L.
,
Zhou
,
Y.
,
Tian
,
W.
,
Qiu
,
S.
,
Su
,
G.
,
Zhao
,
B.
,
Yuan
,
Y.
, and
Ma
,
R.
,
2016
, “
Natural Convection Heat Transfer Test for In-Vessel Retention at Prototypic Rayleigh Numbers-Results of COPRA Experiments
,”
Prog. Nucl. Energy
,
86
, pp.
80
86
.
19.
Gaus-Liu
,
X.
,
Miassoedov
,
A.
,
Fluhrer
,
B.
, and
Cron
,
T.
,
2014
, “
Experimental Results of In-Vessel Melt Pool Behaviour With Surface Insulation and Surface Cooling Conditions From LIVE3D and LIVE 2D Facilities
,”
19th Pacific Basin Nuclear Conference
, Vancouver, BC, Canada, Aug. 24–28.
20.
Gaus-Liu
,
X.
,
Miassoedov
,
A.
,
Cron
,
T.
,
Foit
,
J.
,
Wenz
,
T.
, and
Schmidt-Stiefel
,
S.
,
2010
, “
Core Melt Solidification Characteristics in RPV Lower Head. Experimental Results From Live-Tests
,”
ASME J. Eng. Gas Turbines Power
,
132
(
10
), p.
102924
.
21.
Pham
,
Q. T.
,
Seiler
,
J. M.
,
Combeau
,
H.
,
Gaus-Liu
,
X.
,
Kretzschmar
,
F.
, and
Miassoedov
,
A.
,
2013
, “
Modeling of Heat Transfer and Solidification in LIVE L3A Experiment
,”
Int. J. Heat Mass Transfer
,
58
(1–2), pp.
691
701
.
You do not currently have access to this content.