Hitachi-GE developed a 300 MWel class modular simplified and medium small reactor (DMS) concept, and the DMS was originally designed for generating electricity only. In this study, the feasibility of a cogeneration DMS plant which supplies both electricity and heat is under investigation. The thermal performance of the DMS plant without or with low-, medium-, or high-temperature thermal utilization (TU) applications is evaluated by numerical simulations. The results show that the electricity generated reduces as the heating requirement of TU application becomes higher. Furthermore, the economic performance of the cogeneration DMS plant is compared with another two integrated systems: (i) DMS plus electric boilers and (ii) DMS plus natural gas boilers, for those three TU applications in Canada. The results illustrate that the DMS plus natural gas boilers system are most economic if there is no carbon tax, but with high-CO2 emissions (up to 180 kton per year). The cogeneration plant performs best as the carbon tax increases up to $40/ton. The cogeneration DMS plant is a promising scheme to supply both electricity and heat simultaneously in the economic-environmental point of view.

References

References
1.
International Energy Agency
,
2014
, “
Key World Energy Statistics 2014
,” International Energy Agency, Paris.
2.
International Atomic Energy Agency
,
2013
, “
Nuclear Technology Review 2013
,” International Atomic Energy Agency, Vienna, Austria.
3.
Carelli
,
M. D.
,
Garrone
,
P.
,
Locatelli
,
G.
,
Mancini
,
M.
,
Mycoff
,
C.
,
Trucco
,
P.
, and
Ricotti
,
M. E.
,
2010
, “
Economic Features of Integral, Modular, Small-to-Medium Size Reactors
,”
Prog. Nucl. Energy
,
52
(
4
), pp.
403
414
.
4.
Ando
,
K.
,
Yokouchi
,
S.
,
Hirako
,
S.
,
Tominaga
,
K.
,
Moriya
,
K.
, and
Hida
,
T.
,
2005
, “
Development of the DMS (Double MS: Modular Simplified and Medium Small Reactor) (1)—Plant Concept and System Design for the DMS
,”
13th International Conference on Nuclear Engineering
, Beijing, China, May 16–20, Paper No. ICONE13-50682.
5.
Ikegawa
,
T.
,
Kawabata
,
Y.
,
Ishii
,
Y.
,
Matsuura
,
M.
,
Hirako
,
S.
, and
Hoshi
,
T.
,
2010
, “
The Plant Feature and Performance of Double MS (Modular Simplified and Medium Small Reactor)
,”
ASME J. Eng. Gas Turbines Power
,
132
(
1
), p.
015001
.
6.
World Nuclear Association,
2017
, “Nuclear Power in Canada,” World Nuclear Association, London, accessed Jan. 21, 2017, http://www.world-nuclear.org/info/Country-Profiles/Countries-A-F/Canada--Nuclear-Power
7.
Ingersoll
,
D. T.
,
Binder
,
J. L.
,
Kostin
,
V. I.
,
Panov
,
Y. K.
,
Polunichev
,
V.
,
Ricotti
,
M. E.
,
Conti
,
D.
, and
Alonso
,
G.
,
2004
, “
Cogeneration of Electricity and Potable Water Using the International Reactor Innovative and Secure (IRIS) Design
,”
Americas Nuclear Energy Symposium
(
ANES 2004
), Miami, FL, Oct. 3–6, Paper No. INIS-US-0470.
8.
Asiedu-Boateng
,
P.
,
Akaho
,
E. H. K.
,
Nyarko
,
B. J. B.
, and
Yamoah
,
S.
,
2012
, “
Modeling and Simulation of Cogeneration Nuclear Power Plant for Seawater Desalination
,”
Nucl. Eng. Des.
,
242
, pp.
143
147
.
9.
Ingersoll
,
D. T.
,
Houghton
,
Z. J.
,
Bromm
,
R.
, and
Desportes
,
C.
,
2014
, “
NuScale Small Modular Reactor for Co-Generation of Electricity and Water
,”
Desalination
,
340
, pp.
84
93
.
10.
Franca
,
K. B.
,
Laborde
,
H. M.
, and
Neff
,
H.
,
2000
, “
Design and Performance of Small Scale Solar Powered Water Desalination Systems, Utilizing Reverse Osmosis
,”
ASME J. Solar Energy Eng.
,
122
(
4
), pp.
170
175
.
11.
Klein
,
S. A.
,
Beckman
,
W. A.
,
Mitchell
,
J. W.
,
Duffie
,
J. A.
,
Duffie
,
N. A.
,
Freeman
,
T. L.
,
Mitchell
,
J. C.
,
Braun
,
J. E.
,
Evans
,
B. L.
,
Kummer
,
J. P.
,
Urban
,
R. E.
,
Fiksel
,
A.
,
Thornton
,
J. W.
,
Blair
,
N. J.
,
Williams
,
P. M.
,
Bradley
,
D. E.
,
McDowell
,
T. P.
, Kummert, M.,
Arias
,
D. A.
, and
Duffy
,
M. J.
,
2010
, “
TRNSYS—Version 17
,” Solar Energy Laboratory, University of Wisconsin, Madison, WI.
12.
Natural Resources Canada
,
2003
, “
Heating With Electricity
,” Natural Resources Canada, Ottawa, ON, Canada.
13.
ASHRAE
,
2008
, “
2008 ASHRAE Handbook—Heating, Ventilating, and Air-Conditioning Systems and Equipment
,”
Boilers
,
American Society of Heating, Refrigerating and Air-Conditioning Engineers
, Atlanta, GA, Chap. 31.
14.
Saskatoon Light and Power
,
2015
, “
Electrical Rates in Saskatoon
,” City of Saskatoon, Saskatoon, SK, Canada, accessed Sept. 28, 2015, https://www.saskatoon.ca/services-residents/power-water/saskatoon-light-power/electrical-rates
15.
SaskEnergy
,
2015
, “
Natural Gas Rates in Saskatoon
,” SaskEnergy, Saskatoon, SK, Canada, accessed Sept. 28, 2015, http://www.saskenergy.com/residential/resrates_curr.asp
16.
Traverso
,
A.
,
Massardo
,
A. F.
,
Santarelli
,
M.
, and
Cali
,
M.
,
2003
, “
A New Generalized Carbon Exergy Tax: An Effective Rule to Control Global Warming
,”
ASME J. Eng. Gas Turbines Power
,
125
(
4
), pp.
972
978
.
17.
Sanz
,
W.
,
Jericha
,
H.
,
Moser
,
M.
, and
Heitmeir
,
F.
,
2004
, “
Thermodynamic and Economic Investigation of an Improved Graz Cycle Power Plant for CO2 Capture
,”
ASME
Paper No. GT2004-53722.
18.
Natural Resources Canada
,
2013
, “
CO2 Emission Factors
,” Natural Resources Canada, Ottawa, ON, Canada, accessed Sept. 28, 2015, http://www.nrcan.gc.ca/energy/efficiency/industry/technical-info/benchmarking/canadian-steel-industry/5193
19.
Rasouli
,
M.
,
Akbari
,
S.
,
Simonson
,
C. J.
, and
Besant
,
R. W.
,
2014
, “
Energetic, Economic and Environmental Analysis of a Health-Care Facility HVAC System Equipped With a Run-Around Membrane Energy Exchanger
,”
Energy Build.
,
69
, pp.
112
121
.
You do not currently have access to this content.